通过简单有效的方法,实现了由辛可宁衍生的生物碱β-异cupreidine催化的N -2,2,2-三氟乙基异丁酮酮与MBH型碳酸盐之间的不对称S N 2'–S N 2'反应。制备了一系列具有优异收率和立体选择性的手性α-三氟甲基胺。随后且容易的脱保护过程以立体选择性的方式得到了γ-三氟甲基-α-亚甲基内酰胺。
Lewis Base Catalyzed Enantioselective Allylic Hydroxylation of Morita–Baylis–Hillman Carbonates with Water
摘要:
A Lewis base catalyzed allylic hydroxylation of Morita-Baylis-Hillman (MBH) carbonates has been developed. Various chiral MBH alcohols can be synthesized in high yields (up to 99%) and excellent enantioselectivities (up to 94% ee). This is the first report using water as a nucleophile in asymmetric organocatalysis. The nucleophilic role of water has been verified using O-18-labeling experiments.
a cinchonine derived alkaloid, catalyzed asymmetric SN2′–SN2′ reaction between N-2,2,2-trifluoroethylisatin ketimines and MBH type carbonates was realized in a simple and efficient way. A series of chiral α-trifluoromethylamines were prepared with excellent yields and stereoselectivities. A subsequent and easy process of deprotection gave γ-trifluoromethyl-α-methylenelactam in a stereoselective manner
通过简单有效的方法,实现了由辛可宁衍生的生物碱β-异cupreidine催化的N -2,2,2-三氟乙基异丁酮酮与MBH型碳酸盐之间的不对称S N 2'–S N 2'反应。制备了一系列具有优异收率和立体选择性的手性α-三氟甲基胺。随后且容易的脱保护过程以立体选择性的方式得到了γ-三氟甲基-α-亚甲基内酰胺。
Lewis Base Catalyzed Enantioselective Allylic Hydroxylation of Morita–Baylis–Hillman Carbonates with Water
A Lewis base catalyzed allylic hydroxylation of Morita-Baylis-Hillman (MBH) carbonates has been developed. Various chiral MBH alcohols can be synthesized in high yields (up to 99%) and excellent enantioselectivities (up to 94% ee). This is the first report using water as a nucleophile in asymmetric organocatalysis. The nucleophilic role of water has been verified using O-18-labeling experiments.