摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

1-[3'-C-(hydroxymethyl)-β-D-glucopyranosyl]5-fluorouracil | 1375074-67-1

中文名称
——
中文别名
——
英文名称
1-[3'-C-(hydroxymethyl)-β-D-glucopyranosyl]5-fluorouracil
英文别名
5-Fluoro-1-[3-C-(Hydroxymethyl)-Beta-D-Glucopyranosyl]pyrimidine-2,4(1h,3h)-Dione;5-fluoro-1-[(2R,3R,4S,5R,6R)-3,4,5-trihydroxy-4,6-bis(hydroxymethyl)oxan-2-yl]pyrimidine-2,4-dione
1-[3'-C-(hydroxymethyl)-β-D-glucopyranosyl]5-fluorouracil化学式
CAS
1375074-67-1
化学式
C11H15FN2O8
mdl
——
分子量
322.247
InChiKey
ASRLDHHNHXDEKP-RZBPYSQRSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -3.1
  • 重原子数:
    22
  • 可旋转键数:
    3
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.64
  • 拓扑面积:
    160
  • 氢给体数:
    6
  • 氢受体数:
    9

反应信息

  • 作为产物:
    描述:
    吡啶三氟甲磺酸三甲基硅酯 作用下, 以 甲醇 为溶剂, 反应 2.5h, 生成 1-[3'-C-(hydroxymethyl)-β-D-glucopyranosyl]5-fluorouracil
    参考文献:
    名称:
    3′-Axial CH2OH Substitution on Glucopyranose does not Increase Glycogen Phosphorylase Inhibitory Potency. QM/MM-PBSA Calculations Suggest Why
    摘要:
    Glycogen phosphorylase is a molecular target for the design of potential hypoglycemic agents. Structure‐based design pinpointed that the 3′‐position of glucopyranose equipped with a suitable group has the potential to form interactions with enzyme’s cofactor, pyridoxal 5′‐phosphate (PLP), thus enhancing the inhibitory potency. Hence, we have investigated the binding of two ligands, 1‐(βd‐glucopyranosyl)5‐fluorouracil (GlcFU) and its 3′‐CH2OH glucopyranose derivative. Both ligands were found to be low micromolar inhibitors with Ki values of 7.9 and 27.1 μm, respectively. X‐ray crystallography revealed that the 3′‐CH2OH glucopyranose substituent is indeed involved in additional molecular interactions with the PLP γ‐phosphate compared with GlcFU. However, it is 3.4 times less potent. To elucidate this discovery, docking followed by postdocking Quantum Mechanics/Molecular Mechanics – Poisson–Boltzmann Surface Area (QM/MM‐PBSA) binding affinity calculations were performed. While the docking predictions failed to reflect the kinetic results, the QM/MM‐PBSA revealed that the desolvation energy cost for binding of the 3′‐CH2OH‐substituted glucopyranose derivative out‐weigh the enthalpy gains from the extra contacts formed. The benefits of performing postdocking calculations employing a more accurate solvation model and the QM/MM‐PBSA methodology in lead optimization are therefore highlighted, specifically when the role of a highly polar/charged binding interface is significant.
    DOI:
    10.1111/j.1747-0285.2012.01349.x
点击查看最新优质反应信息