摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

5-Amino-1-tert-butyl-3-[3-(2,6-dichloro-benzyloxy)-phenyl]-1H-pyrazole-4-carbonitrile | 221243-67-0

中文名称
——
中文别名
——
英文名称
5-Amino-1-tert-butyl-3-[3-(2,6-dichloro-benzyloxy)-phenyl]-1H-pyrazole-4-carbonitrile
英文别名
——
5-Amino-1-tert-butyl-3-[3-(2,6-dichloro-benzyloxy)-phenyl]-1H-pyrazole-4-carbonitrile化学式
CAS
221243-67-0
化学式
C21H20Cl2N4O
mdl
——
分子量
415.322
InChiKey
KOIVAZPFYNEURB-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    5.64
  • 重原子数:
    28.0
  • 可旋转键数:
    4.0
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.24
  • 拓扑面积:
    76.86
  • 氢给体数:
    1.0
  • 氢受体数:
    5.0

反应信息

  • 作为反应物:
    参考文献:
    名称:
    Generation of Monospecific Nanomolar Tyrosine Kinase Inhibitors via a Chemical Genetic Approach
    摘要:
    Selective protein kinase inhibitors are highly sought after as tools for studying cellular signal transduction cascades, yet few have been discovered due to the highly conserved fold of kinase catalytic domains. Through a combination of small molecule synthesis and protein mutagenesis, a highly potent (IC50 = 1.5 nM) and uniquely specific inhibitor (4-amino-1-tert-butyl-3-(1'-naphthyl)pyrazolo[3,4-d]pyrimidine) of a rationally engineered v-Src tyrosine kinase (Ile338Gly v-Src) has been identified. Both the potency and specificity of this compound surpass those of any known Src family tyrosine kinase inhibitors. The molecule strongly inhibits the engineered v-Src in whole cells but does not inhibit tyrosine phosphorylation in cells that express only wild-type tyrosine kinases. In addition, the inhibitor selectively disrupts transformation in cells that express the target v-Src. The structural degeneracy of kinase active sites should allow the same complementary inhibitor/protein design strategy to be widely applicable across this entire enzyme superfamily.
    DOI:
    10.1021/ja983267v
  • 作为产物:
    参考文献:
    名称:
    Generation of Monospecific Nanomolar Tyrosine Kinase Inhibitors via a Chemical Genetic Approach
    摘要:
    Selective protein kinase inhibitors are highly sought after as tools for studying cellular signal transduction cascades, yet few have been discovered due to the highly conserved fold of kinase catalytic domains. Through a combination of small molecule synthesis and protein mutagenesis, a highly potent (IC50 = 1.5 nM) and uniquely specific inhibitor (4-amino-1-tert-butyl-3-(1'-naphthyl)pyrazolo[3,4-d]pyrimidine) of a rationally engineered v-Src tyrosine kinase (Ile338Gly v-Src) has been identified. Both the potency and specificity of this compound surpass those of any known Src family tyrosine kinase inhibitors. The molecule strongly inhibits the engineered v-Src in whole cells but does not inhibit tyrosine phosphorylation in cells that express only wild-type tyrosine kinases. In addition, the inhibitor selectively disrupts transformation in cells that express the target v-Src. The structural degeneracy of kinase active sites should allow the same complementary inhibitor/protein design strategy to be widely applicable across this entire enzyme superfamily.
    DOI:
    10.1021/ja983267v
点击查看最新优质反应信息

文献信息

  • Optimizing Small Molecule Inhibitors of Calcium-Dependent Protein Kinase 1 to Prevent Infection by Toxoplasma gondii
    作者:Sebastian Lourido、Chao Zhang、Michael S. Lopez、Keliang Tang、Jennifer Barks、Qiuling Wang、Scott A. Wildman、Kevan M. Shokat、L. David Sibley
    DOI:10.1021/jm4001314
    日期:2013.4.11
    Toxoplasma gondii is sensitive to bulky pyrazolo [3,4-d] pyrimidine (PP) inhibitors due to the presence of a Gly gatekeeper in the essential calcium dependent protein kinase 1 (CDPK1). Here we synthesized a number of new derivatives of 3-methyl-benzyl-PP (3-MB-PP, or 1). The potency of PP analogues in inhibiting CDPK1 enzyme activity in vitro (low nM IC50 values) and blocking parasite growth in host cell monolayers in vivo (low mu M EC50 values) were highly correlated and occurred in a CDPK1-specific manner. Chemical modification of the PP scaffold to increase half-life in the presence of microsomes in vitro led to identification of compounds with enhanced stability while retaining activity. Several of these more potent compounds were able to prevent lethal infection with T. gondii in the mouse model. Collectively, the strategies outlined here provide a route for development of more effective compounds for treatment of toxoplasmosis and perhaps related parasitic diseases.
查看更多