传统药物疗法存在多种阻碍患者治疗的缺点,例如抗生素耐药性的积累或全身应用过程中药物选择性和毒性低。为了克服这些挑战,可以通过采用主要依赖于对外部物理化学刺激的反应的递送、靶向或释放解决方案来控制药物活性。由于各种技术限制,机械力作为聚合物机械化学背景下的刺激迄今为止尚未用于此目的,但它已被证明是一种方便且可靠的方法,可以以亚分子精度进行位点选择性重排或裂解键在材料化学领域。在这里,我们提出了一种前所未有的机械化学响应系统,能够连续释放含呋喃的小分子,通过超声诱导溶液中以二硫化物为中心的聚合物的选择性断裂,包括呋喃基荧光团丹磺酰和药物呋塞米以及呋喃基多柔比星。我们表明,机械化学生成的硫醇封端聚合物对呋喃基药物和乙炔二羧酸衍生物的狄尔斯-阿尔德 (DA) 加合物进行迈克尔型加成,通过逆向 DA 反应启动小分子药物的下游释放。我们相信这种方法可以作为激活许多其他小分子的蓝图。我们表明,机械化学生
Successive Mechanochemical Activation and Small Molecule Release in an Elastomeric Material
作者:Michael B. Larsen、Andrew J. Boydston
DOI:10.1021/ja411891x
日期:2014.1.29
We have developed a mechanochemically responsive material capable of successively releasing small organic molecules from a cross-linked network upon repeated compressions. The use of a flexactivatedmechanophore that does not lead to main chain scission and an elastomeric polyurethane enabled consecutive compressions with incremental increases in the % mechanophoreactivation. Additionally, we examined
“Flex-Activated” Mechanophores: Using Polymer Mechanochemistry To Direct Bond Bending Activation
作者:Michael B. Larsen、Andrew J. Boydston
DOI:10.1021/ja403757p
日期:2013.6.5
We describe studies in mechanochemical transduction that probe the activation of bonds orthogonal to an elongated polymer main chain. Compression of mechanophore-cross-linked materials resulted in the release of small molecules via cleavage of covalent bonds that were not integral components of the elongated polymer segments. The reactivity is proposed to arise from the distribution of force through the cross-linking units of the polymer network and subsequent bond bending motions that are consistent with the geometric changes in the overall reaction. This departure from contemporary polymer mechanochemistry, in which activation is achieved primarily by force-induced bond elongation, is a first step toward mechanophores capable of releasing side-chain functionalities without inherently compromising the overall macromolecular architecture.