Isomer-Specific Hydrogen Bonding as a Design Principle for Bidirectionally Quantitative and Redshifted Hemithioindigo Photoswitches
作者:Joshua E. Zweig、Timothy R. Newhouse
DOI:10.1021/jacs.7b04448
日期:2017.8.16
quantitative bidirectional isomerization. Additionally, extending conjugation from the electron-rich pyrrole results in quantitative visible-light photoswitches, as well as photoswitches that isomerize with red and near-infrared light. The presence of the hydrogen bond leading to the observed redshift is supported by computational and spectroscopicevidence.
Photo-involving aryl halide activation plays a pivotal role in organic synthesis and materials science. Revealing the mechanism and understanding the photophysical and photochemical processes in the activation is of great importance. Here, we found that aryl halides could be directly activated to form aryl radicals via halogen bonding under visible light irradiation without using photocatalysts or
here we took advantage of the photophysical properties of cercosporin, and used it as a metal-free photocatalyst to develop an unprecedented cercosporin-driven photocatalysis under mild conditions. Furthermore, the forming conditions and excited-state dynamics of radical anions of cercosporin have been systematically investigated. In particular, transient femtosecond absorption spectroscopy was employed
A novel and facile copper-catalyzed 5-endo-trig cyclization of ketoxime carboxylates for the synthesis of 2-arylpyrroles has been developed. The reaction tolerates a range of functional groups and is a practical procedure for rapid synthesis of 2-arylpyrroles in high yields under mild conditions.