The synthesis and cross-linking of new, visibly sensitive high-speed water-soluble photoresists are reported. Attempts to sensitise our existing poly(vinyl alcohol)(PVA)-based photopolymer into the visible region with various additives at between 1 and 5 mol% have been unsuccessful. The additives may disrupt the formation or configuration of the dimeric aggregates previously found to be a prerequisite for cross-linking or have a screening effect absorbing some or all of the photonic energy, thereby preventing excitation of any aggregated chromophore groups.Synthetic modification of the original (E)-2-(4-formylstyryl)-3,4-dimethylthiazolium methylsulfate produces chromophores which, when grafted onto PVA, generate photopolymers absorbing in the visible region. (E)-2-[4-(2-Ethylbutoxy)-styryl]-3-methylbenzothiazolium methylsulfate forms a photopolymer with λmax at 400 nm; while (E)-2-[2-(2,2-diethoxyethoxy)-4-(N,N-diethylamino)styryl]-3,4-dimethylthiazolium methylsulfate forms a photopolymer with λmax at 495 nm. Step-wedge analysis, UV absorption and FT-NMR spectroscopy indicate that the thiazolium and benzothiazolium photopolymers cross-link by a [2 + 2]cycloaddition reaction generating interchain cross-links via cyclobutane units. However, the amine photopolymer does not show any evidence of cross-linking, with the stencil being completely washed out during step-wedge analysis. Molecular modelling indicates that the diethoxyethoxy group prevents formation of the aggregates normally formed by electrostatic attractions.This theoretical prediction is confirmed by fluorescence spectroscopy. In high-concentration solutions the thiazolium and benzothiazolium models show significant emission bands relating to excimer or higher-order aggregate species. Upon dilution these bands are blue shifted to wavelengths comparable to those observed for photopolymer films. At very dilute concentrations they are lost and monomer bands appear while for thin films they are lost upon dimerisation. The amine photopolymer shows very weak emission bands unaffected upon exposure. This confirms that very few aggregates are formed, suggesting they are in non-reactive configurations.
本报告介绍了新型可见光敏感高速
水溶性光致抗蚀剂的合成和交联过程。我们曾尝试使用各种添加剂将现有的聚
乙烯醇(PVA)光聚合物敏化到可见光区域,添加剂的浓度在 1 至 5 摩尔% 之间,但都没有成功。添加剂可能会破坏二聚体的形成或构型,而以前发现二聚体是交联的先决条件,或者添加剂会产生屏蔽效应,吸收部分或全部光子能量,从而阻止任何聚合的发色团基团被激发。对原始的(E)-2-(4-甲酰基
苯乙烯基)-3,4-二甲基
噻唑鎓甲
硫酸盐进行合成改性可产生发色团,当这些发色团接枝到 PVA 上时,可产生在可见光区域具有吸收性的光聚合物。(E)-2-[4-(2-乙基丁氧基)-
苯乙烯基]-3-甲基
苯并噻唑鎓甲
硫酸盐形成的光聚合物的 λmax 波长为 400 纳米;而(E)-2-[2-(2,2-二乙氧基乙氧基)-4-(N,N-二乙基
氨基)
苯乙烯基]-3,4-二甲基
噻唑鎓甲
硫酸盐形成的光聚合物的 λmax 波长为 495 纳米。阶跃对冲分析、紫外吸收和傅立叶变换-核磁共振光谱表明,
噻唑鎓和
苯并噻唑鎓光聚合物通过
环丁烷单元发生[2 + 2]环加成反应,产生链间交联。然而,
胺类光聚合物没有显示出任何交联迹象,在阶跃分析过程中,模板被完全洗掉。分子建模表明,二乙氧基乙氧基基团阻止了通常由静电吸引形成的聚集体的形成。在高浓度溶液中,
噻唑鎓和
苯并噻唑鎓模型显示出与准分子或高阶聚集体物种有关的显著发射带。稀释后,这些波段会蓝移,波长与光聚合物薄膜的波长相当。在浓度非常稀的情况下,这些条带会消失,并出现单体条带,而在薄膜中,这些条带会在二聚化时消失。
胺类光聚合物在曝光后会出现非常微弱的发射带,不受影响。这证明形成的聚集体非常少,表明它们处于非反应构型。