Simultaneous presence of unsaturation and long alkyl chain at P1′ of Ilomastat confers selectivity for gelatinase A (MMP-2) over gelatinase B (MMP-9) inhibition as shown by molecular modelling studies
摘要:
Structural analogues of Ilomastat (Galardin (R)), containing unsaturation(s) and chain extension carrying bulky phenyl group or alkyl moieties at P-1(') were synthesized and purified by centrifugal partition chromatography. They were analyzed for their inhibitory capacity towards MMP-1, MMP-2, MMP-3, MMP-9 and MMP-14, main endopeptidases involved in tumour progression. Presence of unsaturation(s) decreased the inhibitory potency of compounds but, in turn increased their selectivity for gelatinases. 2b and 2d derivatives with a phenyl group inhibited preferentially MMP-9 with IC50 equal to 45 and 38 nM, respectively, but also display activity against MMP-2 IC50 equal to 280 and 120 nM, respectively). Molecular docking computations confirmed affinity of these substances for both gelatinases. With aims to obtain a specific gelatinase A (MMP-2) inhibitor, P, of Ilomastat was modified to carry one unsaturation coupled to an alkyl chain with pentylidene group. Docking studies indicated that MMP-2, but not MMP-9, could accommodate such substitution; indeed 2a proved to inhibit MMP-2 (IC50 = 123 nM), while displaying no inhibitory capacity towards MMP-9. (c) 2007 Elsevier Ltd. All rights reserved.
Simultaneous presence of unsaturation and long alkyl chain at P1′ of Ilomastat confers selectivity for gelatinase A (MMP-2) over gelatinase B (MMP-9) inhibition as shown by molecular modelling studies
摘要:
Structural analogues of Ilomastat (Galardin (R)), containing unsaturation(s) and chain extension carrying bulky phenyl group or alkyl moieties at P-1(') were synthesized and purified by centrifugal partition chromatography. They were analyzed for their inhibitory capacity towards MMP-1, MMP-2, MMP-3, MMP-9 and MMP-14, main endopeptidases involved in tumour progression. Presence of unsaturation(s) decreased the inhibitory potency of compounds but, in turn increased their selectivity for gelatinases. 2b and 2d derivatives with a phenyl group inhibited preferentially MMP-9 with IC50 equal to 45 and 38 nM, respectively, but also display activity against MMP-2 IC50 equal to 280 and 120 nM, respectively). Molecular docking computations confirmed affinity of these substances for both gelatinases. With aims to obtain a specific gelatinase A (MMP-2) inhibitor, P, of Ilomastat was modified to carry one unsaturation coupled to an alkyl chain with pentylidene group. Docking studies indicated that MMP-2, but not MMP-9, could accommodate such substitution; indeed 2a proved to inhibit MMP-2 (IC50 = 123 nM), while displaying no inhibitory capacity towards MMP-9. (c) 2007 Elsevier Ltd. All rights reserved.