摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

| 1221823-25-1

中文名称
——
中文别名
——
英文名称
——
英文别名
——
化学式
CAS
1221823-25-1
化学式
C60Cl10
mdl
——
分子量
1075.19
InChiKey
MWSAVRRIAILYDZ-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    17.45
  • 重原子数:
    70.0
  • 可旋转键数:
    0.0
  • 环数:
    32.0
  • sp3杂化的碳原子比例:
    0.17
  • 拓扑面积:
    0.0
  • 氢给体数:
    0.0
  • 氢受体数:
    0.0

反应信息

  • 作为产物:
    描述:
    足球烯一氯化碘 作用下, 以 氯苯 为溶剂, 反应 0.83h, 生成
    参考文献:
    名称:
    Soluble Chlorofullerenes C60Cl2,4,6,8,10. Synthesis, Purification, Compositional Analysis, Stability, and Experimental/Theoretical Structure Elucidation, Including the X-ray Structure of C1-C60Cl10
    摘要:
    The efficacy of various analytical techniques for the characterization of products of C-60 chlorination reactions were evaluated by (i) using samples of C60Cl6 of known purity and (ii) repeating a number of literature syntheses reported to yield pure C60Cln compounds. The techniques were NMR, UV vis, IR, and Raman spectroscopy, FAB, MALDI, LDI, ESI, and APCI mass spectrometry, HPLC, TGA, elemental analysis, and single-crystal X-ray diffraction. Most of these techniques are shown to give ambiguous or erroneous results, calling into question the composition and/or purity of nearly all C60Cln compounds reported to date. The optimum analytical method for chlorofullerenes was found to be a combination of HPLC and either MALDI or APCI mass spectrometry. For the first time, the chlorination of C-60 by ICl, ICl3, and Cl-2 was studied in detail using dynamic HPLC analysis and APCI mass spectrometry. Suitable conditions were found for the preparation of the new chlorofullerenes 1,7-C60Cl2, 1,9-C60Cl2, 1,6,9,18-C60Cl4, and 1,2,7,10,14,24,25,28,29,31-C60Cl10. The latter compound was also studied by C-13 NMR spectroscopy and X-ray diffraction, which led to the unambiguous determination of its asymmetric addition pattern. The unusual structure of C60Cl10 was compared with other possible isomers using DFT-predicted relative energies. These results, along with additional experimental data and an analysis of the DFT-predicted frontier orbitals of likely intermediates, were used to rationalize the formation of the new compound C60Cl10 from C60Cl6 and excess ICl without the rearrangement of any C-Cl bonds. For the first time, the stability of C60Cln compounds under a variety of conditions was studied in detail, leading to the discovery that they are, in general, very light-sensitive in solution. The X-ray structure of C60Cl6 was also redetermined with higher precision.
    DOI:
    10.1021/ja1005256
点击查看最新优质反应信息