Kinetic Resolution by Enantioselective Dihydroxylation of Secondary Allylic 4-Methoxybenzoate Esters Using a Mechanistically Designed Cinchona Alkaloid Catalyst
摘要:
The OsO4-cinchona alkaloid catalyzed asymmetric dihydroxylation process has been applied successfully to the kinetic resolution of 1-substituted allylic alcohols by the use of the 4-methoxybenzoyl derivatives in conjunction with the specifically designed DHQD-PYDZ(S)-anthryl catalyst (5 . OsO4). Thus, (+/-)-3-buten-2-yl 4-methoxybenzoate (4a) and (+/-)-1-phenyl-2-propen-1-yl 4-methoxybenzoate (4b) have been kinetically resolved with relative rate constants of 20 and 79, respectively. These values are among the best reported for the kinetic resolution of racemic compounds using non-enzymatic catalyst systems. The design of this resolution process was accomplished under mechanistic guidance using the transition state model proposed recently for the asymmetric dihydroxylation process. The specially selected ligand 5 possesses a deep U-shaped binding pocket with both the methoxyquinoline and the 1-anthryl walls projecting rearward of the pyridazine linker group at the floor. This catalyst not only recognizes the 4-methoxybenzoyl group of these substrates, which extends into the distant binding pocket of the catalyst, but also provides an open space adjacent to one of the allylic alpha-substituents of the substrate which allows for enantiomeric selection in the dihydroxylation. The magnitude of the kinetic resolution and the absolute stereopreference for the dihydroxylation reaction provide strong evidence for the guiding mechanistic model. The utility of this process is clearly demonstrated by the selective dihydroxylation of 1,4-pentadien-3-yl 4-methoxybenzoate (10) to give diol 11 in 70% isolated yield with >98% ee and >96% de.
of highly enantioenriched tetrasubstituted alkene architectures from isatin-based Morita-Baylis-Hillman carbonates and allylic derivatives, under the cooperative catalysis of a tertiary amine and a chiral iridium complex. The success of the switchable construction of the tetrasubstituted alkene motif relies on the diastereodivergent 1,3-oxo-allylation reaction between N-allylic ylides and chiral π-allyliridium
Meyer,G. et al., Bulletin de la Societe Chimique de France, 1970, p. 730 - 737
作者:Meyer,G. et al.
DOI:——
日期:——
Kinetic Resolution by Enantioselective Dihydroxylation of Secondary Allylic 4-Methoxybenzoate Esters Using a Mechanistically Designed Cinchona Alkaloid Catalyst
作者:E. J. Corey、Mark C. Noe、Angel Guzman-Perez
DOI:10.1021/ja00149a004
日期:1995.11
The OsO4-cinchona alkaloid catalyzed asymmetric dihydroxylation process has been applied successfully to the kinetic resolution of 1-substituted allylic alcohols by the use of the 4-methoxybenzoyl derivatives in conjunction with the specifically designed DHQD-PYDZ(S)-anthryl catalyst (5 . OsO4). Thus, (+/-)-3-buten-2-yl 4-methoxybenzoate (4a) and (+/-)-1-phenyl-2-propen-1-yl 4-methoxybenzoate (4b) have been kinetically resolved with relative rate constants of 20 and 79, respectively. These values are among the best reported for the kinetic resolution of racemic compounds using non-enzymatic catalyst systems. The design of this resolution process was accomplished under mechanistic guidance using the transition state model proposed recently for the asymmetric dihydroxylation process. The specially selected ligand 5 possesses a deep U-shaped binding pocket with both the methoxyquinoline and the 1-anthryl walls projecting rearward of the pyridazine linker group at the floor. This catalyst not only recognizes the 4-methoxybenzoyl group of these substrates, which extends into the distant binding pocket of the catalyst, but also provides an open space adjacent to one of the allylic alpha-substituents of the substrate which allows for enantiomeric selection in the dihydroxylation. The magnitude of the kinetic resolution and the absolute stereopreference for the dihydroxylation reaction provide strong evidence for the guiding mechanistic model. The utility of this process is clearly demonstrated by the selective dihydroxylation of 1,4-pentadien-3-yl 4-methoxybenzoate (10) to give diol 11 in 70% isolated yield with >98% ee and >96% de.
Ni-Catalyzed Asymmetric Allylation of Secondary Phosphine Oxides
A nickel catalyzed asymmetric allylation of secondary phosphineoxides (SPO) for the synthesis of tertiary phosphineoxides (TPO) was realized with high enantioselectivity. The dynamic kinetic resolution of SPO was accomplished in the presence of nickel complex. By elucidating the absolute configurations of the reacted SPO starting material and the TPO product, we confirmed that the allylation reaction