Stereoselective Synthesis of 3-Substituted 2-Aminocyclopentanecarboxylic Acid Derivatives and Their Incorporation into Short 12-Helical β-Peptides That Fold in Water
摘要:
A stereoselective synthetic route is reported for the introduction of side chains at the 3-position of trans-2-aminocyclopentanecarboxylic acid (ACPC). Ring opening of the aziridine 2-benzyloxymethyl-6-azabicyclo[3.1.0]hexane with selected nucleophiles occurs in a regioselective manner and provides ACPC precursors with functional groups at the 3-position, trans to the 2-amino group. Oligomers composed of the 3-substituted ACPC residues maintain the 12-helical conformation displayed by the nonsubstituted analogues, as shown by their similar circular dichroism signatures. The added diversity of the new residues provides good dispersion of NMR signals, allowing the assignment of nearly all the NOE signals of a selected hexamer in aqueous solution. The NOES between protons on nonadjacent residues are characteristic of the 12-helix. 3-Substituted ACPC residues allow one to arrange specific functional groups in a geometrically defined fashion, which should facilitate the design of beta-peptides for biological applications.
Stereoselective Synthesis of 3-Substituted 2-Aminocyclopentanecarboxylic Acid Derivatives and Their Incorporation into Short 12-Helical β-Peptides That Fold in Water
摘要:
A stereoselective synthetic route is reported for the introduction of side chains at the 3-position of trans-2-aminocyclopentanecarboxylic acid (ACPC). Ring opening of the aziridine 2-benzyloxymethyl-6-azabicyclo[3.1.0]hexane with selected nucleophiles occurs in a regioselective manner and provides ACPC precursors with functional groups at the 3-position, trans to the 2-amino group. Oligomers composed of the 3-substituted ACPC residues maintain the 12-helical conformation displayed by the nonsubstituted analogues, as shown by their similar circular dichroism signatures. The added diversity of the new residues provides good dispersion of NMR signals, allowing the assignment of nearly all the NOE signals of a selected hexamer in aqueous solution. The NOES between protons on nonadjacent residues are characteristic of the 12-helix. 3-Substituted ACPC residues allow one to arrange specific functional groups in a geometrically defined fashion, which should facilitate the design of beta-peptides for biological applications.
STING MODULATOR COMPOUNDS, AND METHODS OF MAKING AND USING
申请人:Takeda Pharmaceutical Company Limited
公开号:EP3707151B1
公开(公告)日:2022-01-05
US8772450B2
申请人:——
公开号:US8772450B2
公开(公告)日:2014-07-08
[EN] PCSK9 INHIBITORS AND METHODS OF USE THEREOF<br/>[FR] INHIBITEURS DE PCSK9 ET LEURS PROCÉDÉS D'UTILISATION
申请人:DOGMA THERAPEUTICS INC
公开号:WO2020150473A2
公开(公告)日:2020-07-23
The invention relates to novel heteroaryl compounds and pharmaceutical preparations thereof. The invention further relates to methods of treating or preventing cardiovascular diseases, and methods treating sepsis or septic shock, using the novel heterocyclic compounds disclosed herein.
Stereoselective Synthesis of 3-Substituted 2-Aminocyclopentanecarboxylic Acid Derivatives and Their Incorporation into Short 12-Helical β-Peptides That Fold in Water
作者:Matthew G. Woll、John D. Fisk、Paul R. LePlae、Samuel H. Gellman
DOI:10.1021/ja0258778
日期:2002.10.1
A stereoselective synthetic route is reported for the introduction of side chains at the 3-position of trans-2-aminocyclopentanecarboxylic acid (ACPC). Ring opening of the aziridine 2-benzyloxymethyl-6-azabicyclo[3.1.0]hexane with selected nucleophiles occurs in a regioselective manner and provides ACPC precursors with functional groups at the 3-position, trans to the 2-amino group. Oligomers composed of the 3-substituted ACPC residues maintain the 12-helical conformation displayed by the nonsubstituted analogues, as shown by their similar circular dichroism signatures. The added diversity of the new residues provides good dispersion of NMR signals, allowing the assignment of nearly all the NOE signals of a selected hexamer in aqueous solution. The NOES between protons on nonadjacent residues are characteristic of the 12-helix. 3-Substituted ACPC residues allow one to arrange specific functional groups in a geometrically defined fashion, which should facilitate the design of beta-peptides for biological applications.