摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

Fe(5,10,15-tris(2,6-dichlorophenyl)corrole) | 431892-33-0

中文名称
——
中文别名
——
英文名称
Fe(5,10,15-tris(2,6-dichlorophenyl)corrole)
英文别名
——
Fe(5,10,15-tris(2,6-dichlorophenyl)corrole)化学式
CAS
431892-33-0
化学式
C37H17Cl6FeN4
mdl
——
分子量
786.134
InChiKey
YRMFZYHEZZJZFV-OCUZUDMXSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    None
  • 重原子数:
    None
  • 可旋转键数:
    None
  • 环数:
    None
  • sp3杂化的碳原子比例:
    None
  • 拓扑面积:
    None
  • 氢给体数:
    None
  • 氢受体数:
    None

反应信息

  • 作为反应物:
    参考文献:
    名称:
    Reduction of Cobalt and Iron Corroles and Catalyzed Reduction of CO2
    摘要:
    The role of cobalt and iron corroles in catalytic CO2 reduction has been studied. Chemical, electrochemical, and photochemical reductions of the stable metal corroles Ph3PCoIII(tpfc) (tpfc = 5,10,15-tris(pentafluorophenyl)corrole), ClFeIV(tpfc), and CIFeIV(tdcc) (tdcc = 5,10,15-tris(2,6-dichlorophenyl)corrole) have been carried out in acetonitrile solutions. Stepwise reduction to the [M-II(tpfc)](-) and [M-1(tpfc)](2-) states was observed in all cases. Gradual reduction with sodium amalgam permitted recording of the optical absorption spectra of the various oxidation states and showed that the M-1 state reacts with CO2. Cyclic voltammetry in Ar-saturated acetonitrile solutions permitted determination of the following half-wave potentials: for Ph3PCOIII (tpfc), 1.11 V, 0.72 V, -0.42 V (E-pc), - 1.44 V, -2.3 V (E-pc); for ClFeIV(tpfc), 0.44 V, - 1.01 V (E-pc), - 1.60 V, -2.2 V (E-pc); for ClFeIV(tdcc), 0.24 V, - 1.18 V (E-pc), - 1.78 V vs SCE with a scan rate of 0. 1 V s(-1). Cyclic voltammetry in CO2-saturated solutions indicated that the Co-1 and Fe-1 complexes react with CO2 and that the reduced Fe(tdcc) complex is the most efficient electrocatalyst for CO2 reduction, showing the largest catalytic currents among these corroles. Photochemical reduction in CO2-saturated acetonitrile solutions containing p-terphenyl (TP) as a sensitizer and triethylamine (TEA) as a reductant led to production of CO and H, These experiments also show that Fe(tdcc) is more effective than the other corroles as a CO2 reduction catalyst. The present finding that the M-1 oxidation states of the cobalt and iron corroles can react with CO2 is in contrast with the case of the respective porphyrins and phthalocyanines, which do not react with CO2 until they are reduced beyond the M-1 state.
    DOI:
    10.1021/jp013668o
  • 作为产物:
    参考文献:
    名称:
    Reduction of Cobalt and Iron Corroles and Catalyzed Reduction of CO2
    摘要:
    The role of cobalt and iron corroles in catalytic CO2 reduction has been studied. Chemical, electrochemical, and photochemical reductions of the stable metal corroles Ph3PCoIII(tpfc) (tpfc = 5,10,15-tris(pentafluorophenyl)corrole), ClFeIV(tpfc), and CIFeIV(tdcc) (tdcc = 5,10,15-tris(2,6-dichlorophenyl)corrole) have been carried out in acetonitrile solutions. Stepwise reduction to the [M-II(tpfc)](-) and [M-1(tpfc)](2-) states was observed in all cases. Gradual reduction with sodium amalgam permitted recording of the optical absorption spectra of the various oxidation states and showed that the M-1 state reacts with CO2. Cyclic voltammetry in Ar-saturated acetonitrile solutions permitted determination of the following half-wave potentials: for Ph3PCOIII (tpfc), 1.11 V, 0.72 V, -0.42 V (E-pc), - 1.44 V, -2.3 V (E-pc); for ClFeIV(tpfc), 0.44 V, - 1.01 V (E-pc), - 1.60 V, -2.2 V (E-pc); for ClFeIV(tdcc), 0.24 V, - 1.18 V (E-pc), - 1.78 V vs SCE with a scan rate of 0. 1 V s(-1). Cyclic voltammetry in CO2-saturated solutions indicated that the Co-1 and Fe-1 complexes react with CO2 and that the reduced Fe(tdcc) complex is the most efficient electrocatalyst for CO2 reduction, showing the largest catalytic currents among these corroles. Photochemical reduction in CO2-saturated acetonitrile solutions containing p-terphenyl (TP) as a sensitizer and triethylamine (TEA) as a reductant led to production of CO and H, These experiments also show that Fe(tdcc) is more effective than the other corroles as a CO2 reduction catalyst. The present finding that the M-1 oxidation states of the cobalt and iron corroles can react with CO2 is in contrast with the case of the respective porphyrins and phthalocyanines, which do not react with CO2 until they are reduced beyond the M-1 state.
    DOI:
    10.1021/jp013668o
  • 作为试剂:
    描述:
    参考文献:
    名称:
    Reduction of Cobalt and Iron Corroles and Catalyzed Reduction of CO2
    摘要:
    The role of cobalt and iron corroles in catalytic CO2 reduction has been studied. Chemical, electrochemical, and photochemical reductions of the stable metal corroles Ph3PCoIII(tpfc) (tpfc = 5,10,15-tris(pentafluorophenyl)corrole), ClFeIV(tpfc), and CIFeIV(tdcc) (tdcc = 5,10,15-tris(2,6-dichlorophenyl)corrole) have been carried out in acetonitrile solutions. Stepwise reduction to the [M-II(tpfc)](-) and [M-1(tpfc)](2-) states was observed in all cases. Gradual reduction with sodium amalgam permitted recording of the optical absorption spectra of the various oxidation states and showed that the M-1 state reacts with CO2. Cyclic voltammetry in Ar-saturated acetonitrile solutions permitted determination of the following half-wave potentials: for Ph3PCOIII (tpfc), 1.11 V, 0.72 V, -0.42 V (E-pc), - 1.44 V, -2.3 V (E-pc); for ClFeIV(tpfc), 0.44 V, - 1.01 V (E-pc), - 1.60 V, -2.2 V (E-pc); for ClFeIV(tdcc), 0.24 V, - 1.18 V (E-pc), - 1.78 V vs SCE with a scan rate of 0. 1 V s(-1). Cyclic voltammetry in CO2-saturated solutions indicated that the Co-1 and Fe-1 complexes react with CO2 and that the reduced Fe(tdcc) complex is the most efficient electrocatalyst for CO2 reduction, showing the largest catalytic currents among these corroles. Photochemical reduction in CO2-saturated acetonitrile solutions containing p-terphenyl (TP) as a sensitizer and triethylamine (TEA) as a reductant led to production of CO and H, These experiments also show that Fe(tdcc) is more effective than the other corroles as a CO2 reduction catalyst. The present finding that the M-1 oxidation states of the cobalt and iron corroles can react with CO2 is in contrast with the case of the respective porphyrins and phthalocyanines, which do not react with CO2 until they are reduced beyond the M-1 state.
    DOI:
    10.1021/jp013668o
点击查看最新优质反应信息

文献信息

  • Iron and Cobalt Corroles in Solution and on Carbon Nanotubes as Molecular Photocatalysts for Hydrogen Production by Water Reduction
    作者:Miguel A. Morales Vásquez、Mariana Hamer、Nicolás I. Neuman、Alvaro Y. Tesio、Andrés Hunt、Horacio Bogo、Ernesto J. Calvo、Fabio Doctorovich
    DOI:10.1002/cctc.201700349
    日期:2017.8.23
    Herein, we report the use of cobalt and iron corrole complexes as catalysts of H2O reduction to generate H2. Electro‐ and photocatalysis has been used in the case of dissolved corroles for water reduction with inspiring results. Carbon nanotubes doped with corroles were used as photo‐electrochemical catalysts, with very low overpotential values and increased hydrogen production; incredibly high turnover
    在这里,我们报道了使用络合物作为H 2 O还原生成H 2的催化剂。对于溶解的助剂,已将电催化和光催化用于减少份,从而产生令人鼓舞的结果。掺杂有环氧乙烷的碳纳米管被用作光电化学催化剂,具有极低的过电势值和增加的氢气产量。获得了令人难以置信的高周转率,分别达到了大约10 7和10 5的周转频率。通过最后一个过程,我们能够获得1 mmol的H 2通过使用微量的催化剂,数量级为皮克。反应可以在中进行,而无需有机溶剂。值得注意的是,如果分子催化剂吸附在碳纳米管上,则光电化学催化效率提高了五个数量级。
查看更多

同类化合物

()-2-(5-甲基-2-氧代苯并呋喃-3(2)-亚乙基)乙酸乙酯 (双(2,2,2-三氯乙基)) (乙基N-(1H-吲唑-3-基羰基)ethanehydrazonoate) (Z)-3-[[[2,4-二甲基-3-(乙氧羰基)吡咯-5-基]亚甲基]吲哚-2--2- (S)-(-)-5'-苄氧基苯基卡维地洛 (S)-(-)-2-(α-(叔丁基)甲胺)-1H-苯并咪唑 (S)-(-)-2-(α-甲基甲胺)-1H-苯并咪唑 (S)-氨氯地平-d4 (S)-8-氟苯并二氢吡喃-4-胺 (S)-4-(叔丁基)-2-(喹啉-2-基)-4,5-二氢噁唑 (S)-4-氯-1,2-环氧丁烷 (S)-3-(2-(二氟甲基)吡啶-4-基)-7-氟-3-(3-(嘧啶-5-基)苯基)-3H-异吲哚-1-胺 (S)-2-(环丁基氨基)-N-(3-(3,4-二氢异喹啉-2(1H)-基)-2-羟丙基)异烟酰胺 (SP-4-1)-二氯双(喹啉)-钯 (SP-4-1)-二氯双(1-苯基-1H-咪唑-κN3)-钯 (R,S)-可替宁N-氧化物-甲基-d3 (R,S)-六氢-3H-1,2,3-苯并噻唑-2,2-二氧化物-3-羧酸叔丁酯 (R)-(+)-5'-苄氧基卡维地洛 (R)-(+)-2,2'',6,6''-四甲氧基-4,4''-双(二苯基膦基)-3,3''-联吡啶(1,5-环辛二烯)铑(I)四氟硼酸盐 (R)-卡洛芬 (R)-N'-亚硝基尼古丁 (R)-DRF053二盐酸盐 (R)-4-异丙基-2-恶唑烷硫酮 (R)-3-甲基哌啶盐酸盐; (R)-2-苄基哌啶-1-羧酸叔丁酯 (N-(Boc)-2-吲哚基)二甲基硅烷醇钠 (N-{4-[(6-溴-2-氧代-1,3-苯并恶唑-3(2H)-基)磺酰基]苯基}乙酰胺) (E)-2-氰基-3-(5-(2-辛基-7-(4-(对甲苯基)-1,2,3,3a,4,8b-六氢环戊[b]吲哚-7-基)-2H-苯并[d][1,2,3]三唑-4-基)噻吩-2-基)丙烯酸 (E)-2-氰基-3-[5-(2,5-二氯苯基)呋喃-2-基]-N-喹啉-8-基丙-2-烯酰胺 (8α,9S)-(+)-9-氨基-七氢呋喃-6''-醇,值90% (6R,7R)-7-苯基乙酰胺基-3-[(Z)-2-(4-甲基噻唑-5-基)乙烯基]-3-头孢唑啉-4-羧酸二苯甲基酯 (6-羟基嘧啶-4-基)乙酸 (6,7-二甲氧基-4-(3,4,5-三甲氧基苯基)喹啉) (6,6-二甲基-3-(甲硫基)-1,6-二氢-1,2,4-三嗪-5(2H)-硫酮) (5aS,6R,9S,9aR)-5a,6,7,8,9,9a-六氢-6,11,11-三甲基-2-(2,3,4,5,6-五氟苯基)-6,9-甲基-4H-[1,2,4]三唑[3,4-c][1,4]苯并恶嗪四氟硼酸酯 (5R,Z)-3-(羟基((1R,2S,6S,8aS)-1,3,6-三甲基-2-((E)-prop-1-en-1-yl)-1,2,4a,5,6,7,8,8a-八氢萘-1-基)亚甲基)-5-(羟甲基)-1-甲基吡咯烷-2,4-二酮 (5E)-5-[(2,5-二甲基-1-吡啶-3-基-吡咯-3-基)亚甲基]-2-亚磺酰基-1,3-噻唑烷-4-酮 (5-(4-乙氧基-3-甲基苄基)-1,3-苯并二恶茂) (5-溴-3-吡啶基)[4-(1-吡咯烷基)-1-哌啶基]甲酮 (5-氯-2,1,3-苯并噻二唑-4-基)-氨基甲氨基硫代甲酸甲酯一氢碘 (5-氨基-6-氰基-7-甲基[1,2]噻唑并[4,5-b]吡啶-3-甲酰胺) (5-氨基-1,3,4-噻二唑-2-基)甲醇 (4aS-反式)-八氢-1H-吡咯并[3,4-b]吡啶 (4aS,9bR)-6-溴-2,3,4,4a,5,9b-六氢-1H-吡啶并[4,3-B]吲哚 (4S,4''S)-2,2''-环亚丙基双[4-叔丁基-4,5-二氢恶唑] (4-(4-氯苯基)硫代)-10-甲基-7H-benzimidazo(2,1-A)奔驰(德)isoquinolin-7一 (4-苄基-2-甲基-4-nitrodecahydropyrido〔1,2-a][1,4]二氮杂) (4-甲基环戊-1-烯-1-基)(吗啉-4-基)甲酮 (4-己基-2-甲基-4-nitrodecahydropyrido〔1,2-a][1,4]二氮杂) (4,5-二甲氧基-1,2,3,6-四氢哒嗪)