The first total synthesis of the highly complex and potent anticancer agent haouamine A is reported through an eight-step sequence. Brevity of the sequence and complete control of chemo-, position-, and stereoselectivity (both planar and axial chirality) were possible through the invention of chemistry specifically tailored for the problems at hand, namely a cascade annulation proceeding via a hitherto unknown chemical entity for the indeno-tetrahydropyridine ring system as well as a pyrone-assisted stitching of the daunting bent-aromatic ring.
The first total synthesis of the highly complex and potent anticancer agent haouamine A is reported through an eight-step sequence. Brevity of the sequence and complete control of chemo-, position-, and stereoselectivity (both planar and axial chirality) were possible through the invention of chemistry specifically tailored for the problems at hand, namely a cascade annulation proceeding via a hitherto unknown chemical entity for the indeno-tetrahydropyridine ring system as well as a pyrone-assisted stitching of the daunting bent-aromatic ring.
Total synthesis of haouamine A: the indeno-tetrahydropyridine core
作者:Noah Z. Burns、Mikkel Jessing、Phil S. Baran
DOI:10.1016/j.tet.2009.05.075
日期:2009.8
A full account of synthetic efforts toward the indeno-tetrahydropyridine core of haouamine A is presented. initial failed strategies led to the unexpected discovery of a mild abnormal Chichibabin pyridine synthesis and provided knowledge and inspiration for the development of a cascade annulation that has enabled rapid and scalable access to the core in either racemic or enantiopure form. (C) 2009 Elsevier Ltd. All rights reserved.
Total Synthesis of (±)-Haouamine A
作者:Phil S. Baran、Noah Z. Burns
DOI:10.1021/ja0602997
日期:2006.3.1
The first total synthesis of the highly complex and potent anticancer agent haouamine A is reported through an eight-step sequence. Brevity of the sequence and complete control of chemo-, position-, and stereoselectivity (both planar and axial chirality) were possible through the invention of chemistry specifically tailored for the problems at hand, namely a cascade annulation proceeding via a hitherto unknown chemical entity for the indeno-tetrahydropyridine ring system as well as a pyrone-assisted stitching of the daunting bent-aromatic ring.