Methods to generate analogs of coenzyme A in vitro and in vivo are disclosed. The methods comprise reacting pantetheine or a derivative thereof with a reporter to form labeled pantetheine or a derivative thereof, phosphorylating the labeled pantetheine or derivative thereof to form phosphopantetheine or a derivative thereof, adenylating the labeled phosphopantetheine or derivative thereof to form a labeled dephosphoCoenzyme A or derivative thereof, and phosphorylating the 3′-hydrozyl of the labeled dephosphoCoenzume A or derivative thereof to form a labeled coenzyme A analog or derivative thereof.
Methods to generate analogs of coenzyme A in vivo are disclosed. The methods to generate analogs of coenzyme A in a cell comprise reacting pantetheine or a derivative thereof with a reporter to form labeled pantetheine or a derivative thereof, contacting the cell with the labeled pantetheine or derivative thereof such that the labeled pantetheine or derivative thereof enters the cell, phosphorylating the labeled pantetheine or derivative thereof to form phosphopantetheine or a derivative thereof, adenylating the labeled phosphopantetheine or derivative thereof to form a labeled dephosphoCoenzyme A or derivative thereof, and phosphorylating the 3′-hydroxyl of the labeled dephosphoCoenzyme A or derivative thereof to form a labeled coenzyme A analog or derivative thereof.
Synthesis and Evaluation of Bioorthogonal Pantetheine Analogues for in Vivo Protein Modification
作者:Jordan L. Meier、Andrew C. Mercer、Heriberto Rivera、Michael D. Burkart
DOI:10.1021/ja063217n
日期:2006.9.1
target for the site-specific modification of fusion systems and new approaches to natural product proteomics. A detailed study of pantetheine analogues was performed in order to identify suitable partners for covalent protein labeling inside living cells. A rapid synthesis of pantothenamide analogues was developed and used to produce a panel which was evaluated for in vitro and in vivo protein labeling