Transferring Self-Assembled, Nanoscale Cables into Electrical Devices
摘要:
This study details a new derivative of the contorted HBCs that self-organizes into one-dimensional, single-crystalline fibers. X-ray diffraction, transmission electron microscopy, and electron diffraction studies show that they have an orthorhombic unit cell with dimensions of 5.8 nm x 4.5 nm x 0.45 nm. Each fiber is composed of a few thousands columns. A method is put forth that utilizes elastomer stamps to manipulate and position isolated fibers in organic field effect transistors.
Transferring Self-Assembled, Nanoscale Cables into Electrical Devices
摘要:
This study details a new derivative of the contorted HBCs that self-organizes into one-dimensional, single-crystalline fibers. X-ray diffraction, transmission electron microscopy, and electron diffraction studies show that they have an orthorhombic unit cell with dimensions of 5.8 nm x 4.5 nm x 0.45 nm. Each fiber is composed of a few thousands columns. A method is put forth that utilizes elastomer stamps to manipulate and position isolated fibers in organic field effect transistors.
Expeditious Synthesis of Contorted Hexabenzocoronenes
作者:Kyle N. Plunkett、Kamil Godula、Colin Nuckolls、Noah Tremblay、Adam C. Whalley、Shengxiong Xiao
DOI:10.1021/ol9001834
日期:2009.6.4
Contorted hexabenzocoronenes (HBCs) have been synthesized in an expedited manner utilizing a double Barton-Kellogg olefination reaction and a subsequent Scholl cyclization. The scope of both transformations was investigated using a series of pentacene quinones and double olefin precursors. The utility,of these reactions to help create functionalized and oligomeric HBCs in a rapid manner is demonstrated.
Transferring Self-Assembled, Nanoscale Cables into Electrical Devices
This study details a new derivative of the contorted HBCs that self-organizes into one-dimensional, single-crystalline fibers. X-ray diffraction, transmission electron microscopy, and electron diffraction studies show that they have an orthorhombic unit cell with dimensions of 5.8 nm x 4.5 nm x 0.45 nm. Each fiber is composed of a few thousands columns. A method is put forth that utilizes elastomer stamps to manipulate and position isolated fibers in organic field effect transistors.