From Molecular to Macroscopic Engineering: Shaping Hydrogen‐Bonded Organic Nanomaterials
作者:K. Yoosaf、Anna Llanes‐Pallas、Tomas Marangoni、Abdelhalim Belbakra、Riccardo Marega、Edith Botek、Benoît Champagne、Davide Bonifazi、Nicola Armaroli
DOI:10.1002/chem.201002103
日期:2011.3.7
linear system 5 with the related angular modules 6 and 7 enables formation of helical nanostructures, unambiguously evidenced by AFM. Finally, thermally induced self‐assembly was studied in parallel with modules 8 and 9, in which the uracyl recognition sites are protected with tert‐butyloxycarbonyl (BOC) groups. This strategy allows further control of the self‐assembly/self‐organization process by temperature
发色炔支架轴承2,6-双(乙酰氨基)吡啶(的自组装和自组织行为1,2)或尿嘧啶型(3 - 9)的末端基团已被光物理和显微镜法考察。系统吸收和发光研究表明,由于亲液/疏溶剂力和π-π堆积相互作用的结合,1和2在非极性溶剂(即环己烷)中经历自组织并形成球形纳米颗粒,这在宽视野中得到了证明。光学显微镜,TEM和AFM分析。对于更长的分子模块2,与1(20–1000 nm)。在283–353 K范围内的温度扫描显示,自组织的纳米颗粒可逆地形成和破坏,在较低温度下稳定。分子模块1和2分别然后彻底与互补三重氢键单元混合3 - 9。根据3 – 9的特定几何结构,可以通过显微镜研究证明不同的纳米结构。模块1或模块2与模块3的组合(仅带有一个末端尿嘧啶单元)导致形成囊泡结构。相反,当1与双尿嘧啶衍生物4或5结合使用,观察到从纳米颗粒到纳米线的结构演变。通过混合1和4或1和5所获得的金属丝的长度可以通过添加3