Identifying the targets of bioactivesmallmolecules is a challenging endeavor for which no general solution currently exists. Classical affinity purification experiments suffer from the need to functionalise a bioactive compound and link it to a solid support, which may interfere with target binding. A modern mass spectrometry-based proteomics technique that has partially circumvented this problem
Providing a New Aniline Bioisostere through the Photochemical Production of 1-Aminonorbornanes
作者:Daryl Staveness、Taylor M. Sodano、Kangjun Li、Elizabeth A. Burnham、Klarissa D. Jackson、Corey R.J. Stephenson
DOI:10.1016/j.chempr.2018.10.017
日期:2019.1
This report describes the photochemical conversion of aminocyclopropanes into 1-aminonorbornanes via formal [3 + 2] cycloadditions initiated by homolytic fragmentation of amine radical cation intermediates. Aligning with the modern movement toward sp(3)-rich motifs in drug discovery, this strategy provides access to a diverse array of substitution patterns on this saturated carbocyclic framework while offering the robust functional-group tolerance (e.g., -OH, -NHBoc) necessary for further derivatization. Evaluating the metabolic stability of selected morpholine-based 1-aminonorbornanes demonstrated a low propensity for oxidative processing and no proclivity toward reactive metabolite formation, suggesting a potential bioisosteric role for 1-aminonorbornanes. Continuous-flow processing allowed for efficient operation on the gram scale, providing promise for translation to industrially relevant scales. This methodology only requires low loadings of a commercially available, visible-light-active photocatalyst and a simple salt; thus, it stays true to sustainability goals while readily delivering saturated building blocks that can reduce metabolic susceptibility within drug development programs.