摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

N-{9-[(2R,4S,5R)-4-Hydroxy-5-(2-hydroxy-ethyl)-tetrahydro-furan-2-yl]-9H-purin-6-yl}-benzamide | 184229-66-1

分子结构分类

中文名称
——
中文别名
——
英文名称
N-{9-[(2R,4S,5R)-4-Hydroxy-5-(2-hydroxy-ethyl)-tetrahydro-furan-2-yl]-9H-purin-6-yl}-benzamide
英文别名
——
N-{9-[(2R,4S,5R)-4-Hydroxy-5-(2-hydroxy-ethyl)-tetrahydro-furan-2-yl]-9H-purin-6-yl}-benzamide化学式
CAS
184229-66-1
化学式
C18H19N5O4
mdl
——
分子量
369.38
InChiKey
SMBAVRRMMISMCK-BFHYXJOUSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    1.11
  • 重原子数:
    27.0
  • 可旋转键数:
    5.0
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.33
  • 拓扑面积:
    122.39
  • 氢给体数:
    3.0
  • 氢受体数:
    8.0

反应信息

  • 作为反应物:
    描述:
    N-{9-[(2R,4S,5R)-4-Hydroxy-5-(2-hydroxy-ethyl)-tetrahydro-furan-2-yl]-9H-purin-6-yl}-benzamide吡啶N,N-二异丙基乙胺 作用下, 以 二氯甲烷 为溶剂, 反应 2.0h, 生成 Diisopropyl-phosphoramidous acid (2R,3S,5R)-5-(6-benzoylamino-purin-9-yl)-2-{2-[bis-(4-methoxy-phenyl)-phenyl-methoxy]-ethyl}-tetrahydro-furan-3-yl ester 2-cyano-ethyl ester
    参考文献:
    名称:
    Alteration of DNA Primary Structure by DNA Topoisomerase I. Isolation of the Covalent Topoisomerase I−DNA Binary Complex in Enzymatically Competent Form
    摘要:
    DNA ligation by DNA topoisomerase I was investigated employing synthetic DNA substrates containing a single strand nick. Site-specific cleavage of the DNA by topoisomerase I in proximity to the nick resulted in uncoupling of the cleavage and ligation reactions of the enzyme, thereby trapping the covalent enzyme-DNA intermediate. DNA cleavage could be reversed by the addition of acceptor oligonucleotides containing a free 5'-OH group and capable of hybridizing to the noncleaved strand of the ''suicide substrates''. Utilizing accepters with partial complementarity, modification of nucleic acid structure has been obtained. Modifications included the formation of DNA insertions, deletions, and mismatches. To further evaluate the potential of topoisomerase I to mediate structural transformations of DNA, acceptor oligonucleotides containing nucleophiles other than OH groups at the 5'-end were studied as substrates for the topoisomerase I-mediated ligation reaction. Toward this end, oligonucleotides containing 5'-thio, amino, and hydroxymethylene moieties were synthesized. Initial investigations utilizing a coupled cleavage-ligation assay suggested that only the modified acceptor containing an additional methylene group underwent efficient enzyme-mediated ligation. However, as linear DNA is not a preferred substrate for topoisomerase I, the enzyme-DNA intermediate was purified to homogeneity, thereby allowing investigation of the ligation reaction independent of the forward reaction that formed the covalent binary complex. The isolated complex consisted of equimolar enzyme and DNA, with topoisomerase I covalently bound to a specific site on the DNA duplex in an enzymatically competent form. Displacement of the enzyme-linked tyrosine moiety of the enzyme-DNA binary complex was effected by all the modified acceptor oligonucleotides, affording unnatural internucleosidic linkages at a specific site. Characterization of the formed linkages was effected both by enzymatic and chemical degradation studies. Comparative analysis revealed overall differences in the efficiency and rate of the topoisomerase I-mediated ligation of the modified acceptors. Moreover, the facility of ligation of the amino acceptor was significantly enhanced at increasing pH values. In addition, the method utilized to obtain the topoisomerase I-DNA intermediate is capable of affording large quantities required for further mechanistic and physicochemical characterization of the formed binary complex.
    DOI:
    10.1021/ja961788h
  • 作为产物:
    参考文献:
    名称:
    Alteration of DNA Primary Structure by DNA Topoisomerase I. Isolation of the Covalent Topoisomerase I−DNA Binary Complex in Enzymatically Competent Form
    摘要:
    DNA ligation by DNA topoisomerase I was investigated employing synthetic DNA substrates containing a single strand nick. Site-specific cleavage of the DNA by topoisomerase I in proximity to the nick resulted in uncoupling of the cleavage and ligation reactions of the enzyme, thereby trapping the covalent enzyme-DNA intermediate. DNA cleavage could be reversed by the addition of acceptor oligonucleotides containing a free 5'-OH group and capable of hybridizing to the noncleaved strand of the ''suicide substrates''. Utilizing accepters with partial complementarity, modification of nucleic acid structure has been obtained. Modifications included the formation of DNA insertions, deletions, and mismatches. To further evaluate the potential of topoisomerase I to mediate structural transformations of DNA, acceptor oligonucleotides containing nucleophiles other than OH groups at the 5'-end were studied as substrates for the topoisomerase I-mediated ligation reaction. Toward this end, oligonucleotides containing 5'-thio, amino, and hydroxymethylene moieties were synthesized. Initial investigations utilizing a coupled cleavage-ligation assay suggested that only the modified acceptor containing an additional methylene group underwent efficient enzyme-mediated ligation. However, as linear DNA is not a preferred substrate for topoisomerase I, the enzyme-DNA intermediate was purified to homogeneity, thereby allowing investigation of the ligation reaction independent of the forward reaction that formed the covalent binary complex. The isolated complex consisted of equimolar enzyme and DNA, with topoisomerase I covalently bound to a specific site on the DNA duplex in an enzymatically competent form. Displacement of the enzyme-linked tyrosine moiety of the enzyme-DNA binary complex was effected by all the modified acceptor oligonucleotides, affording unnatural internucleosidic linkages at a specific site. Characterization of the formed linkages was effected both by enzymatic and chemical degradation studies. Comparative analysis revealed overall differences in the efficiency and rate of the topoisomerase I-mediated ligation of the modified acceptors. Moreover, the facility of ligation of the amino acceptor was significantly enhanced at increasing pH values. In addition, the method utilized to obtain the topoisomerase I-DNA intermediate is capable of affording large quantities required for further mechanistic and physicochemical characterization of the formed binary complex.
    DOI:
    10.1021/ja961788h
点击查看最新优质反应信息

同类化合物

()-2-(5-甲基-2-氧代苯并呋喃-3(2)-亚乙基)乙酸乙酯 (甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (反式)-4-壬烯醛 (双(2,2,2-三氯乙基)) (乙腈)二氯镍(II) (乙基N-(1H-吲唑-3-基羰基)ethanehydrazonoate) (βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (±)17,18-二HETE (±)-辛酰肉碱氯化物 (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (s)-2,3-二羟基丙酸甲酯 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 ([2-(萘-2-基)-4-氧代-4H-色烯-8-基]乙酸) ([1-(甲氧基甲基)-1H-1,2,4-三唑-5-基](苯基)甲酮) (Z)-5-辛烯甲酯 (Z)-4-辛烯醛 (Z)-4-辛烯酸 (Z)-3-[[[2,4-二甲基-3-(乙氧羰基)吡咯-5-基]亚甲基]吲哚-2--2- (S,S)-邻甲苯基-DIPAMP (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-(-)-5'-苄氧基苯基卡维地洛 (S)-(-)-2-(α-(叔丁基)甲胺)-1H-苯并咪唑 (S)-(-)-2-(α-甲基甲胺)-1H-苯并咪唑 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-(+)-5,5'',6,6'',7,7'',8,8''-八氢-3,3''-二叔丁基-1,1''-二-2-萘酚,双钾盐 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-盐酸沙丁胺醇 (S)-溴烯醇内酯 (S)-氨氯地平-d4 (S)-氨基甲酸酯β-D-O-葡糖醛酸 (S)-8-氟苯并二氢吡喃-4-胺 (S)-7,7-双[(4S)-(苯基)恶唑-2-基)]-2,2,3,3-四氢-1,1-螺双茚满 (S)-4-(叔丁基)-2-(喹啉-2-基)-4,5-二氢噁唑 (S)-4-氯-1,2-环氧丁烷 (S)-3-(((2,2-二氟-1-羟基-7-(甲基磺酰基)-2,3-二氢-1H-茚满-4-基)氧基)-5-氟苄腈 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-3-(2-(二氟甲基)吡啶-4-基)-7-氟-3-(3-(嘧啶-5-基)苯基)-3H-异吲哚-1-胺 (S)-2-(环丁基氨基)-N-(3-(3,4-二氢异喹啉-2(1H)-基)-2-羟丙基)异烟酰胺 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[[[(1R,2R)-2-[[[3,5-双(叔丁基)-2-羟基苯基]亚甲基]氨基]环己基]硫脲基]-N-苄基-N,3,3-三甲基丁酰胺 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-2-N-Fmoc-氨基甲基吡咯烷盐酸盐 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (SP-4-1)-二氯双(喹啉)-钯 (SP-4-1)-二氯双(1-苯基-1H-咪唑-κN3)-钯