Estrogen Receptor Modulators: Identification and Structure−Activity Relationships of Potent ERα-Selective Tetrahydroisoquinoline Ligands
摘要:
As part of a program aimed at the development of selective estrogen receptor modulators (SERMs), tetrahydroisoquinoline derivative 27 was discovered by high throughput screening. Successive replacements of the p-F substituent of 27 by an aminoethoxy side chain and of the 1-H of the tetrahydroisoquinoline core by a 1-Me group provided analogues 19 and 20. These compounds showed potencies in a cell-based reporter gene assay (ERE assay) varying between 0.6 and 20 nM and displayed antagonist behaviors in the MCF-7 human breast adenocarcinoma cell line with IC(50)s in the range of 2-36 nM. The effect of N-phenyl substituents on the activity and pharmacokinetic properties of tetrahydroisoquinoline analogues was explored. As a result of this investigation, two potent derivatives bearing a p-F N-aryl group, 19c and 20c, were discovered as candidates suitable for further profiling. To gain insight into the ligand-receptor interaction, the X-ray crystallographic structure of the 1-H tetrahydroisoquinoline derivative (R)-18a in complex with ERalpha-ligand binding domain (LBD)(301-553)/C-->S triple mutant was solved to 2.28 Angstrom. An overlay of this X-ray crystal structure with that reported for the complex of ERalpha-LBD301-553/carboxymethylated C and raloxifene (5) shows that both compounds bind to the same cleft of the receptor and display comparable binding modes, with differences being observed in the conformation of their "D-ring" phenyl groups.
Estrogen Receptor Modulators: Identification and Structure−Activity Relationships of Potent ERα-Selective Tetrahydroisoquinoline Ligands
摘要:
As part of a program aimed at the development of selective estrogen receptor modulators (SERMs), tetrahydroisoquinoline derivative 27 was discovered by high throughput screening. Successive replacements of the p-F substituent of 27 by an aminoethoxy side chain and of the 1-H of the tetrahydroisoquinoline core by a 1-Me group provided analogues 19 and 20. These compounds showed potencies in a cell-based reporter gene assay (ERE assay) varying between 0.6 and 20 nM and displayed antagonist behaviors in the MCF-7 human breast adenocarcinoma cell line with IC(50)s in the range of 2-36 nM. The effect of N-phenyl substituents on the activity and pharmacokinetic properties of tetrahydroisoquinoline analogues was explored. As a result of this investigation, two potent derivatives bearing a p-F N-aryl group, 19c and 20c, were discovered as candidates suitable for further profiling. To gain insight into the ligand-receptor interaction, the X-ray crystallographic structure of the 1-H tetrahydroisoquinoline derivative (R)-18a in complex with ERalpha-ligand binding domain (LBD)(301-553)/C-->S triple mutant was solved to 2.28 Angstrom. An overlay of this X-ray crystal structure with that reported for the complex of ERalpha-LBD301-553/carboxymethylated C and raloxifene (5) shows that both compounds bind to the same cleft of the receptor and display comparable binding modes, with differences being observed in the conformation of their "D-ring" phenyl groups.
Estrogen Receptor Modulators: Identification and Structure−Activity Relationships of Potent ERα-Selective Tetrahydroisoquinoline Ligands
作者:Johanne Renaud、Serge François Bischoff、Thomas Buhl、Philipp Floersheim、Brigitte Fournier、Christine Halleux、Joerg Kallen、Hansjoerg Keller、Jean-Marc Schlaeppi、Wilhelm Stark
DOI:10.1021/jm030086h
日期:2003.7.1
As part of a program aimed at the development of selective estrogen receptor modulators (SERMs), tetrahydroisoquinoline derivative 27 was discovered by high throughput screening. Successive replacements of the p-F substituent of 27 by an aminoethoxy side chain and of the 1-H of the tetrahydroisoquinoline core by a 1-Me group provided analogues 19 and 20. These compounds showed potencies in a cell-based reporter gene assay (ERE assay) varying between 0.6 and 20 nM and displayed antagonist behaviors in the MCF-7 human breast adenocarcinoma cell line with IC(50)s in the range of 2-36 nM. The effect of N-phenyl substituents on the activity and pharmacokinetic properties of tetrahydroisoquinoline analogues was explored. As a result of this investigation, two potent derivatives bearing a p-F N-aryl group, 19c and 20c, were discovered as candidates suitable for further profiling. To gain insight into the ligand-receptor interaction, the X-ray crystallographic structure of the 1-H tetrahydroisoquinoline derivative (R)-18a in complex with ERalpha-ligand binding domain (LBD)(301-553)/C-->S triple mutant was solved to 2.28 Angstrom. An overlay of this X-ray crystal structure with that reported for the complex of ERalpha-LBD301-553/carboxymethylated C and raloxifene (5) shows that both compounds bind to the same cleft of the receptor and display comparable binding modes, with differences being observed in the conformation of their "D-ring" phenyl groups.