Inhibition of nucleoside transport By new analogues of nitrobenzylthioinosine
摘要:
Nitrobenzylthioinosine (NBTI, 1) was systematically modified by attachment of substituents at positions C6 and N9, and also by substitution of N1 with C. These modifications were chosen to reduce the polarity of the new compounds. Incorporation of the nitro functionality into a benzoxadiazole ring system was considered first. These new nucleosides showed high affinity (1.5-10 nM) towards the nucleoside transport protein as present on human erythrocyte ghosts. Next, modification of this benzoxadiazole ring system with C, S and O in different positions produced a number of less polar nucleosides with affinity in the higher nanomolar range. Modification of N9 was achieved with different alkyl and alcohol substituents. An n-butyl substituent proved best, although all variations yielded substantial decreases in affinity. Replacement of N1 by a carbon atom in combination with a 2-Cl substituent also resulted in a relatively potent NBTI derivative (47 nM). (C) 2003 Elsevier Science Ltd. All rights reserved.
Inhibition of nucleoside transport By new analogues of nitrobenzylthioinosine
摘要:
Nitrobenzylthioinosine (NBTI, 1) was systematically modified by attachment of substituents at positions C6 and N9, and also by substitution of N1 with C. These modifications were chosen to reduce the polarity of the new compounds. Incorporation of the nitro functionality into a benzoxadiazole ring system was considered first. These new nucleosides showed high affinity (1.5-10 nM) towards the nucleoside transport protein as present on human erythrocyte ghosts. Next, modification of this benzoxadiazole ring system with C, S and O in different positions produced a number of less polar nucleosides with affinity in the higher nanomolar range. Modification of N9 was achieved with different alkyl and alcohol substituents. An n-butyl substituent proved best, although all variations yielded substantial decreases in affinity. Replacement of N1 by a carbon atom in combination with a 2-Cl substituent also resulted in a relatively potent NBTI derivative (47 nM). (C) 2003 Elsevier Science Ltd. All rights reserved.
This invention relates to new analogs or derivatives of nitrobenzylthioinosine, use of these new analogs of nitrobenzylthioinosine for the treatment of pain and various other diseases as well as pharmaceuticals comprising at least on new analog of nitrobenzylthioinosine.
Analogs or derivatives of nitrobenzylthioinosine compounds. The use of these new analogs of nitrobenzylthioinosine and methods for the treatment of pain and various other indications using these analogs of nitrobenzylthioinosine as well as pharmaceutical compositions including analogs of nitrobenzylthioinosine.
[EN] NEW ANALOGS OF NITROBENZYLTHIOINOSINE<br/>[FR] NOUVEAUX ANALOGUES DE LA NITROBENZYLTHIOINOSINE
申请人:GRUENENTHAL GMBH
公开号:WO2003084975A1
公开(公告)日:2003-10-16
This invention relates to new analogs or derivatives of nitrobenzylthioinosine, use of these new analogs of nitrobenzylthioinosine for the treatment of pain and various other diseases as well as pharmaceuticals comprising at least on new analog of nitrobenzylthioinosine.