AbstractCarbazoles have attracted high interest among synthetic chemists due to their unique structural features and potential pharmacological activities. Compared to linear aryliodoniums, cyclic diphenyleneiodoniums are more inert and have not attracted much attention to their application as building blocks. Employing our synthetic strategy, diversified carbazoles can be efficiently obtained from a single cyclic diphenyleneiodonium under mild conditions. The reactions catalyzed by copper(II) acetate have provided a variety of carbazoles in modest to good yields with a broad range of amines including anilines, aliphatic amines and sulfonamides. Moreover, one of the obtained carbazoles has displayed an outstanding ability to protect HT‐22 neuronal cells from the damage induced by neurotoxins glutamate and homocysteic acid.magnified image
this work, a set of structurally diverse synthetic carbazoles was screened for their anticancer activities. According to structure–activity relationship studies, carbazoles with an N-substituted sulfonyl group exhibited better anticancer activity. Moreover, compound 8h was discovered to show the most potent anticancer effects on Capan-2 cells by inducing apoptosis and cell cycle arrest in G2/M phase
Transition metal-catalyzed diamination by hydroxylamines is a common approach for making three-membered aziridines, while its use for building the larger N-heterocycles is still underdeveloped. Herein, we report an efficient Pd(0)-catalyzed inter-molecular [4+1] annulation of o-bromo(or chloro)-biaryls with bifunctional secondary hydroxylamines for the one-step assembly of synthetically useful carbazoles
羟胺的过渡金属催化二化是制备三元氮丙啶的常用方法,而其用于构建较大的N-杂环的用途仍未开发。在此,我们报告了一种有效的 Pd(0) 催化的分子间 [4+1] 环化邻溴(或氯)-联芳基与双功能仲羟胺,用于一步组装合成有用的咔唑。值得注意的是,这种多米诺骨牌反应的关键是明智地选择氨基源和 Pd(0)-催化剂,以便在具有不稳定 NO 的羟胺存在下将芳基卤化物氧化加成到 Pd(0)-物种中。键。
involving sequential nucleophilic and electrophilic C–Nbondformations. Herein, we report a novel Suzuki reaction/C–Hactivation/amination sequence for building a myriad of carbazoles in a single transformation using bifunctional secondary hydroxylamines. It is noteworthy that the synthetic utility of this methodology is highlighted by the total synthesis of clausine V and glycoborine by incorporating
Carbazole moiety is an important scaffold with a variety of biological applications, for example, anti-oxidative stress. Our previous synthesized carbazoles were screened for their neuroprotective properties against two individual oxidative stresses. Some of the new carbazole derivatives were observed with modest to good neuroprotective effects on neuronal cells HT22 against cell injury induced by glutamate or homocysteic acid (HCA). Substituents introduced to the carbazole ring system play crucial roles in their biological activities. In particular, a bulky group favors the neuroprotective activity of the compounds. One of the new compounds, 6, showed the best neuroprotective effects, which might result from its anti-oxidative activity with a GSH-independent mechanism. These findings might provide an alternative strategy for the development of novel carbazole derivatives for the treatment of CNS diseases such as Alzheimer's disease. (C) 2013 Elsevier Masson SAS. All rights reserved.
Synthesis of Carbazoles<i>via</i>One-Pot Copper-Catalyzed Amine Insertion into Cyclic Diphenyleneiodoniums as a Strategy to Generate a Drug-Like Chemical Library
AbstractCarbazoles have attracted high interest among synthetic chemists due to their unique structural features and potential pharmacological activities. Compared to linear aryliodoniums, cyclic diphenyleneiodoniums are more inert and have not attracted much attention to their application as building blocks. Employing our synthetic strategy, diversified carbazoles can be efficiently obtained from a single cyclic diphenyleneiodonium under mild conditions. The reactions catalyzed by copper(II) acetate have provided a variety of carbazoles in modest to good yields with a broad range of amines including anilines, aliphatic amines and sulfonamides. Moreover, one of the obtained carbazoles has displayed an outstanding ability to protect HT‐22 neuronal cells from the damage induced by neurotoxins glutamate and homocysteic acid.magnified image