reaction usingorganicazides as the amino source. The most important two stages were investigated especially in detail: (i) the formation of metal nitrenoid species and its subsequent insertion into a rhodacycle intermediate, and (ii) the regeneration of catalyst with concomitant release of products. It was revealed that a stepwise pathway involving a key Rh(V)-nitrenoid species that subsequently undergoes
The first copper-catalyzed aziridination of olefins using recyclable magnetic nanoparticles is described. Magnetic nanoparticles were modified with dopamine and used as a support to coordinate copper. The methodology was optimized with styrene as olefin and using [N-(p-toluenesulfonyl)imino]phenyliodinane (PhI=NTs) as nitrene source. A microwave irradiation decreased the reaction time by 4-fold compared
Development of the Copper-Catalyzed Olefin Aziridination Reaction
作者:David A. Evans、Mark T. Bilodeau、Margaret M. Faul
DOI:10.1021/ja00086a007
日期:1994.4
Soluble Cu(1) and Cu(I1) triflate and perchlorate salts are efficient catalysts for the aziridination of olefins employing (N-@-tolylsulfonyl)imino)phenyliodinane, PhI=NTs, as the nitreneprecursor. Electron-rich as well as electron-deficient olefins undergo aziridination with this reagent in 55-958 yields, at temperatures ranging from -20 OC to +25 OC. The catalyzed nitrogen atom-transfer reaction
Heteroscorpionate ligands of the bis(pyrazolyl)methane family have been applied in the stabilisation of terminal copper tosyl nitrenes. These species are highly active intermediates in the copper‐catalysed direct C−H amination and nitrene transfer. Novel perfluoroalkyl‐pyrazolyl‐ and pyridinyl‐containing ligands were synthesized to coordinate to a reactive copper nitrene centre. Four distinct copper
activity and the mechanism of di-iron catalysts for aziridination of styrenes using phenyltosyliodinane (PhINTs). In addition, we have developed a similar mono-iron catalyst which operates under the same mechanism albeit with a reduced activity. DFT calculations were performed to investigate the structure and electronic structure of the FeIVNTs species of the latter catalyst. They suggest that the reaction