Identification of non-peptidic cysteine reactive fragments as inhibitors of cysteine protease rhodesain
摘要:
Rhodesain, the major cathepsin L-like cysteine protease in the protozoan Trypanosoma brucei rhodesiense, the causative agent of African sleeping sickness, is a well-validated drug target. In this work, we used a fragment-based approach to identify inhibitors of this cysteine protease, and identified inhibitors of T. brucei. To discover inhibitors active against rhodesain and T. brucei, we screened a library of covalent fragments against rhodesain and conducted preliminary SAR studies. We envision that in vitro enzymatic assays will further expand the use of the covalent tethering method, a simple fragment-based drug discovery technique to discover covalent drug leads. (C) 2015 Elsevier Ltd. All rights reserved.
Design, Synthesis, and Biological Evaluation of N-Carboxyphenylpyrrole Derivatives as Potent HIV Fusion Inhibitors Targeting gp41
摘要:
On the basis of the structures of small-molecule hits targeting the HIV-1 gp41, N-(4-carboxy-3-hydi-oxy)plieiiyl-2,5-dimethylpyl-role (2, NB-2), and N-(3-carboxy-4-chloro)phenylpyrrole (A(1), NB-64), 42 N-carboxyphenylpyrrole derivatives in two categories (A and B series) were designed and synthesized. We found that I I compounds exhibited promising anti-HIV-1 activity at micromolar level and their antiviral activity was correlated with their inhibitory activity on gp41 six-helix bundle formation, suggesting that these compounds block HIV fusion and entry by disrupting gp41 core formation. The structure-activity relationship and molecular docking analysis revealed that the carboxyl group Could interact with either Arg579 or Lys574 to form salt bridges and two methyl groups on the pyrrole ring were favorable for interaction with the residues in gp41 pocket. The most active compound, N-(3-carboxy-4-hydroxy)phenyl-2,5-dimethylpyrrole (A(12)), partially occupied the deep hydrophobic pocket, suggesting that enlarging the molecular size of A(12) could improve its binding affinity and anti-HIV-1 activity for further development as a small-molecule HIV fusion and entry inhibitor.
A Fragment-Based Method to Discover Irreversible Covalent Inhibitors of Cysteine Proteases
作者:Stefan G. Kathman、Ziyang Xu、Alexander V. Statsyuk
DOI:10.1021/jm500345q
日期:2014.6.12
reported which irreversibly tethers drug-like fragments to catalytic cysteines. We attached an electrophile to 100 fragments without significant alterations in the reactivity of the electrophile. A mass spectrometry assay discovered three nonpeptidic inhibitors of the cysteineprotease papain. The identified compounds display the characteristics of irreversibleinhibitors. The irreversible tethering system
Small molecules for the modulation of MCL-1 and methods of modulating cell death, cell division, cell differentiation and methods of treating disorders
申请人:Dana-Farber Cancer Institute, Inc.
公开号:US10000511B2
公开(公告)日:2018-06-19
This invention relates to compounds which selectively bind to the survival protein MCL-1 with high affinity and selectivity, pharmaceutical compositions containing such compounds and the use of those compounds or compositions for modulating MCL-1 activity and for treating hyperproliferative disorders, angiogenesis disorders, cell cycle regulation disorders, autophagy regulation disorders, inflammatory disorders, and/or infectious disorders and/or for enhancing cellular engraftment and/or wound repair, as a sole agent or in combination with other active ingredients.
Chemical entities that kill senescent cells for use in treating age-related disease
申请人:Unity Biotechnology, Inc.
公开号:US10195213B2
公开(公告)日:2019-02-05
Disclosed herein are compounds that are effective for treatment of various disease states associated with senescence. The disclosed compounds can be used to eliminate senescent cells for disease treatment. The dosing of the compounds includes both single administration and regimens of cycling dosages.
An assay for determining compounds that inhibit activity of a BCl-2 protein, or affect conversion of Bcl-2 from an antiapoptotic to a proapoptotic form are described. In addition, compounds that modulate the function of anti-apoptotic proteins such as Bcl-2 and related Bcl-2 family members are identified.
SMALL MOLECULES FOR THE MODULATION OF MCL-1 AND METHODS OF MODULATING CELL DEATH, CELL DIVISION, CELL DIFFERENTIATION AND METHODS OF TREATING DISORDERS
申请人:Walensky Loren D.
公开号:US20130035304A1
公开(公告)日:2013-02-07
This invention relates to compounds which selectively bind to the survival protein MCL-1 with high affinity and selectivity, pharmaceutical compositions containing such compounds and the use of those compounds or compositions for modulating MCL-1 activity and for treating hyperproliferative disorders, angiogenesis disorders, cell cycle regulation disorders, autophagy regulation disorders, inflammatory disorders, and/or infectious disorders and/or for enhancing cellular engraftment and/or wound repair, as a sole agent or in combination with other active ingredients.