通过在2-甲基四氢呋喃(2-MeTHF)中使用廉价的聚甲基氢硅氧烷,开发了通过MeSiH 3原位形成的α-酮酰胺的Cs 2 CO 3催化的氢化硅烷化反应。将由苯胺和烷基胺制得的各种芳基和烷基α-酮酰胺置于氢化硅烷化条件下,以中等至极好的收率得到α-羟基酰胺。将该无过渡金属的方案应用于化学选择性氢化硅烷化反应,其中与简单酮相比,α-酮酰胺官能团的羰基发生还原,并进一步扩展至克级规程。
Ligand-Free Pd-Catalyzed Double Carbonylation of Aryl Iodides with Amines to α-Ketoamides under Atmospheric Pressure of Carbon Monoxide and at Room Temperature
作者:Hongyan Du、Qing Ruan、Minghao Qi、Wei Han
DOI:10.1021/acs.joc.5b01249
日期:2015.8.7
A general Pd-catalyzed double carbonylation of aryl iodides with secondary or primary amines to produce α-ketoamides at atmospheric CO pressure has been developed. This transformation proceeds successfully even at room temperature and in the absence of any ligand and additive. A wide range of aryl iodides and amines can be coupled to the desired α-ketoamides in high yields with excellent chemoselectivities
Selective electrochemical oxidation of aromatic hydrocarbons and preparation of mono/multi-carbonyl compounds
作者:Zhibin Li、Yan Zhang、Kuiliang Li、Zhenghong Zhou、Zhenggen Zha、Zhiyong Wang
DOI:10.1007/s11426-021-1061-x
日期:2021.12
A selective electrochemical oxidation was developed under mild condition. Various mono-carbonyl and multi-carbonyl compounds can be prepared from different aromatic hydrocarbons with moderate to excellent yield and selectivity by virtue of this electrochemical oxidation. The produced carbonyl compounds can be further transformed into α-ketoamides, homoallylic alcohols and oximes in a one-pot reaction
Coupling of Methyl Ketones and Primary or Secondary Amines Leading to α-Ketoamides
作者:Wei Wei、Ying Shao、Huayou Hu、Feng Zhang、Chao Zhang、Yuan Xu、Xiaobing Wan
DOI:10.1021/jo301117b
日期:2012.9.7
A metal-free oxidative coupling of methyl ketones and primary or secondary amines to α-ketoamides has been developed. Four intermediates, α-iodoketone, α-aminoketone, iminium intermediate, and α-hydroxy amine have been identified through a series of control experiments. The atom-economic methodology can be scaled-up, tolerates a variety of functional groups, and is operationally simple.
A simple and practical method for α-ketoamide synthesis via a decarboxylative strategy of isocyanates with α-oxocarboxylic acids is described. The reaction proceeds at room temperature under mild conditions without an oxidant or an additive, showing good substrate scope and functional compatibility. Moreover, the applicability of this method was further demonstrated by the synthesis of various bioactive
Abstract Aminocarbonylation of aryliodides with aromatic and aliphatic amines, leading to formation of the corresponding amides, was efficiently carried out in water under 1 atm of CO usingpalladiumnanoparticles (Pd NPs) formed in situ from [PdCl2(Ar2-BIAN)] complexes. The role of Ar2-BIAN ligands in the stabilization of Pd NPs was evidenced. The nature of the catalytically active species was confirmed