摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

cyclopentyl peroxy radical | 20682-76-2

中文名称
——
中文别名
——
英文名称
cyclopentyl peroxy radical
英文别名
——
cyclopentyl peroxy radical化学式
CAS
20682-76-2
化学式
C5H9O2
mdl
——
分子量
101.125
InChiKey
AOMVQJUSGWRGKI-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    0.9
  • 重原子数:
    7
  • 可旋转键数:
    0
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    10.2
  • 氢给体数:
    0
  • 氢受体数:
    1

反应信息

  • 作为反应物:
    描述:
    cyclopentyl peroxy radical二氧化氮 作用下, 以 为溶剂, 生成 过氧硝酸环戊酯
    参考文献:
    名称:
    水溶液中有机过氧自由基与•NO2 和•NO 的反应:有机过氧硝酸盐和过氧亚硝酸盐的中间体
    摘要:
    在这项工作中,我们使用脉冲辐解技术研究了烷基过氧自由基与•NO2 和•NO 的反应。•NO2 与(CH3)2C(OH)CH2OO•、CH3OO• 和c-C5H9OO• 反应的速率常数在7 × 108 和1.5 × 109 M-1 s-1 之间变化。该反应产生相对长寿命的过氧硝酸烷基酯,它与母体自由基平衡,在 270 nm 以上没有明显的吸收。还表明•NO 迅速加入(CH3)2C(OH)CH2OO• 和CH3OO• 以形成烷基过氧亚硝酸盐。这些反应的速率常数分别确定为 2.8 × 109 和 3.5 × 109 M-1 s-1。然而,与过氧硝酸烷基酯相比,过氧亚硝酸烷基酯不会积累。相反,它们通过沿相对较弱的 O-O 键均裂而迅速分解,最初形成一对。这对中的大部分在笼中坍缩形成硝酸烷基酯RONO2,大约14% 以游离烷氧基和•NO2 自由基的形式扩散出来。热动力学分析预测 CH3 的半衰期..
    DOI:
    10.1021/jp037431z
  • 作为产物:
    描述:
    参考文献:
    名称:
    通过腔衰荡光谱法观察环戊基和环己基过氧自由基的X电子跃迁
    摘要:
    环戊基,环己基和环己基d 11的X电子吸收光谱在室温下通过腔衰荡光谱法记录了过氧自由基。通过将实验光谱与从头算和密度泛函计算得出的预测结果进行比较,我们确定了每种物种的能带起源和振动结构。环戊基过氧基的光谱主要根据两个重叠的薄纱构象异构体来解释,而环己基过氧基的谱似乎是轴向和赤道取代的薄纱构象异构体的叠加,两者均基于环己烷的椅子构象。计算的玻尔兹曼因子的期望值表明顺式构象异构体的数量可比;然而,没有鉴定出唯一可分配给任一过氧化物的顺式构象体的条带。考虑顺式构象异构体的合理分配,并提供了对其不存在的可能解释,其中包括振荡器强度比薄纱规整形器特别低。模式混合似乎是导致两种过氧化物,特别是环己基过氧具有COO弯曲特性的多重振动出现的原因。
    DOI:
    10.1021/jp907605j
点击查看最新优质反应信息

文献信息

  • Ultraviolet absorption spectrum and self-reaction of cyclopentylperoxy radicals
    作者:David M. Rowley、Phillip D. Lightfoot、Robert Lesclaux、Timothy J. Wallington
    DOI:10.1039/ft9928801369
    日期:——
    The kinetics and mechanism of the self-reaction of cyclopentylperoxy radicals: 2 c-C5H9O2→ 2 c-C5H9O + O2(1a), → c-C5H9OH + c-C5H8O + O2(1b), have been studied using both time-resolved and end-product-analysis techniques. Determination of the product yields from the photolysis of Cl2–c-C5H10–O2–N2 mixtures using FTIR spectroscopy demonstrates that ring-opening of the cyclopentoxy radical formed in channel (1a): c-C5H9O + M → CH2(CH2)3CHO + M (3) dominates over reaction with oxygen: c-C5H9O + O2→ c-C5H8O + HO2(2), under atmospheric conditions. Flash photolysis-UV absorption experiments were used to obtain the UV spectrum of the cyclopentylperoxy radical and the kinetics of reaction (1). The spectrum of c-C5H9O2 is similar to those of other alkylperoxy radicals, with a maximum cross-section of (5.22 ± 0.20)× 10–18 cm2 molecule–1 at 250 nm, measured relative to a value of 4.55 × 10–18 cm2 molecule–1 for CH3O2 at 240 nm. The observed second-order rate constant, kobs(–d[c-C5H9O2]/dt= 2kobs[c-C5H9O2]2), for removal of cyclopentylperoxy radicals was dependent on the oxygen partial pressure. Experiments as a function of temperature from 243 to 373 K gave limiting minimum and maximum values of kobs at low (<1 Torr) and high (>50 Torr) oxygen partial pressures, respectively: kmin/cm3 molecule–1 s–1=(1.3 ± 0.4)× 10–14 exp[(188 ± 83)K/T] and kmax/cm3 molecule–1 s–1=(2.9 ± 0.8)× 10–13 exp[–(555 ± 77)K/T]. At low oxygen partial pressures, the only effective removal channel for cyclopentylperoxy radicals is the molecular channel (1b) and kmin can be equated to k1b. Simulations suggest that kmax represents an upper limit on k1 and is at most 25% greater. In light of the present results on the cyclopentylperoxy radical, further experiments were performed on the cyclohexylperoxy radical self-reaction: 2 c-C6H11O2→ 2 c-C6H11O + O2(16a), → c-C6H11OH + c-C6H10O + O2(16b) at low oxygen partial pressures, giving k16b/cm3 molecule–1 s–1=(1.3 ± 0.3)× 10–14 exp[(185 ± 15) K/T] and an estimated k16/cm3 molecule–1 s–1= 7.7 × 10–14 exp(–184 K/T). The above errors are 1σ and represent experimental uncertainty only.
    使用时间分辨模型研究了环戊基过氧自由基自反应的动力学和机理:2 c-C5H9O2→ 2 c-C5H9O + O2(1a), → c- H + c-C5H8O + O2(1b)和最终产品分析技术。使用 FTIR 光谱测定 Cl2–c-C5H10–O2–N2 混合物光解的产物产率表明,通道 (1a) 中形成环戊氧基自由基的开环:c- + M → CH2( )3CHO +在大气条件下,M (3) 主导与氧的反应:c- + O2→ c- + HO2(2)。采用闪光光解-紫外吸收实验获得了环戊基过氧自由基的紫外光谱和反应动力学(1)。 c- 的光谱与其他烷基过氧自由基的光谱相似,在 250 nm 处最大横截面为 (5.22 ± 0.20)× 10–18 cm2 molecular–1,相对于 4.55 × 10–18 的值测量cm2 分子–1(CH3O2),240 nm。观察到的去除环戊基过氧自由基的二阶速率常数 kobs(–d[c- ]/dt= 2kobs[c- ]2) 取决于氧分压。作为 243 至 373 K 温度函数的实验分别给出了低氧分压 (<1 Torr) 和高氧分压 (>50 Torr) 下 kobs 的限制最小值和最大值:kmin/cm3 分子–1 s–1=( 1.3±0.4)×10–14exp[(188±83)K/T]和kmax/cm3分子–1s–1=(2.9±0.8)×10–13exp[–(555±77)K/T ]。在低氧分压下,环戊基过氧自由基唯一有效的去除通道是分子通道(1b),kmin 可等于 k1b。模拟表明 kmax 代表 k1 的上限,最多大 25%。根据环戊基过氧自由基的现有结果,对环己基过氧自由基自反应进行了进一步的实验: 2 c-C6H11O2→ 2 c-C6H11O + O2(16a), → c- H + c-C6H10O + O2(16b) )在低氧分压下,给出 k16b/cm3 分子–1 s–1=(1.3 ± 0.3)× 10–14 exp[(185 ± 15) K/T] 和估计的 k16/cm3 分子–1 s–1 = 7.7 × 10–14 exp(–184 K/T)。上述误差为 1σ,仅代表实验不确定性。
  • Kinetics of the reactions between alkyl radicals and molecular oxygen in aqueous solution
    作者:Adam Marchaj、Douglas G. Kelley、Andreja Bakac、James H. Espenson
    DOI:10.1021/j100164a051
    日期:1991.5
    The rate constant for the reaction R. + O2 --> ROO. in aqueous solution was determined for 18 alkyl radicals by laser flash photolysis. The values are all at the diffusion-controlled limit and lie in the range (1.6-4.9) x 10(9) L mol-1 s-1. The radicals studied are primary, substituted primary, secondary, and benzyl radicals.
  • Cyclopentylperoxyl and cyclohexylperoxyl radicals in aqueous solution: A study by product analysis and pulse radiolysis
    作者:Henryk Zegota、Man Nien Schuchmann、Clemens Von Sonntag
    DOI:10.1021/j150667a026
    日期:1984.11
  • Furimsky, Edward; Howard, James A.; Selwyn, Jennifer, Canadian Journal of Chemistry, 1980, vol. 58, # 7, p. 677 - 680
    作者:Furimsky, Edward、Howard, James A.、Selwyn, Jennifer
    DOI:——
    日期:——
  • Kinetic and mechanistic studies of the reactions of cyclopentylperoxy and cyclohexylperoxy radicals with hydroperoxy radical
    作者:David M. Rowley、Robert Lesclaux、Phillip D. Lightfoot、Barbara Noziere、Timothy J. Wallington、Michael D. Hurley
    DOI:10.1021/j100191a031
    日期:1992.6
    The kinetics and mechanism of the reactions c-C5H9O2 + HO2 --> c-C5H9OOH + O2 (1) and c-C6H11O2 + HO2 --> c-C6H11OOH + O2 (2) have been studied using both the flash photolysis/UV absorption and continuous photolysis/FTIR product analysis techniques. End product analysis experiments at 295 +/- 2 K demonstrated that the yield of hydroperoxide was (96 +/- 3) % and (99 +/- 3)% for reactions 1 and 2, respectively, although systematic errors could add an additional 15% uncertainty. Experiments between 248 and 364 K showed that k1 and k2 demonstrated virtually indistinguishable kinetic behavior at all temperatures, with k1/cm3 molecule-1 s-1 = (2.1 +/- 1.3) x 10(-13) exp((1323 +/- 185) K/T) and k2/cm3 molecule-1 s-1 = (2.6 +/- 1.2) x 10(-13) exp((1245 +/- 124) K/T). Absolute uncertainties on kl and k2, including experimental scatter and uncertainties in the analysis parameters, are estimated to be 18%. No dependence of k1 or k2 on pressure between 200 and 760 Torr was found. The room temperature rate constants for reactions 1 and 2 are significantly greater than those measured for other alkylperoxy radicals to date. The reactions of Cl atoms with cyclopentane, Cl + c-C5H 10 --> HCl + c-C5H9 (6) and cyclohexane, Cl + c-C6H12 --> HCl + c-C6H11 (8) were measured relative to that with methanol, Cl + CH3OH --> HCl + CH2OH (4). Neither k6 nor k8 varied significantly with temperature over the range 248-364 K, with k6/cm3 molecule-1 s-1 = (2.3 +/- 0.2) x 10(-10) and k8/cm3 molecule-1 s-1 = (2.4 +/- 0.3) x 10(-10), using k4/cm3 molecules-1 s-1 = 5.7 x 10(-11). Errors are 1-sigma and represent experimental scatter only, unless stated otherwise.
查看更多