Efficient cocrystal coformer screening based on a Machine learning Strategy: A case study for the preparation of imatinib cocrystal with enhanced physicochemical properties
作者:Xiaoxiao Liang、Shiyuan Liu、Zebin Li、Yuehua Deng、Yanbin Jiang、Huaiyu Yang
DOI:10.1016/j.ejpb.2024.114201
日期:2024.3
Cocrystal engineering, which involves the self-assembly of two or more components into a solid-state supramolecular structure through non-covalent interactions, has emerged as a promising approach to tailor the physicochemical properties of active pharmaceutical ingredient (API). Efficient coformer screening for cocrystal remains a challenge. Herein, a prediction strategy based on machine learning
共晶工程涉及通过非共价相互作用将两种或多种成分自组装成固态超分子结构,已成为调整活性药物成分 (API) 理化性质的一种有前途的方法。共晶的有效共形成体筛选仍然是一个挑战。在此,采用基于机器学习算法的预测策略来预测共晶形成,并成功构建了七个精度超过0.890的可靠模型。选择伊马替尼作为模型药物,并应用建立的模型筛选31种潜在的共形成物。实验验证结果表明,RF-8是七个模型中的最优模型,精度为0.839。当将这七种模型组合起来进行伊马替尼的共形体筛选时,组合模型的准确度达到了0.903,并且观察到并表征了八种新的固体形式。受益于分子间相互作用,所获得的多组分晶体表现出增强的物理化学性质。溶出度和溶解度实验表明,制备的多组分晶体具有更高的累积溶出率,显着提高了伊马替尼的溶解度,且IM-MC的溶解度与甲磺酸伊马替尼α晶型相当。稳定性测试和细胞毒性结果表明,多元晶体表现出优异的稳定性,药物-药物共