Novel Bioactive Hybrid Compound Dual Targeting Estrogen Receptor and Histone Deacetylase for the Treatment of Breast Cancer
摘要:
A strategy to develop chemotherapeutic agents by combining several active groups into a single molecule as a conjugate that can modulate multiple cellular pathways may produce compounds having higher efficacy compared to that of single-target drugs. In this article, we describe the synthesis and evaluation of an array of dual-acting ER and histone deacetylase inhibitors. These novel hybrid compounds combine an indirect antagonism structure motif of ER (OBHS, oxabicycloheptene sulfonate) with the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA). These OBHS-HDACi conjugates exhibited good ER binding affinity and excellent ERa antagonistic activity, and they also exhibited potent inhibitory activities against HDACs. Compared with the approved drug tamoxifen, these conjugates exhibited higher antitumor potency in ER alpha-positive breast cancer cells (MCF-7). Moreover, these conjugates not only showed selective anticancer activity that was more potent against MCF-7 cells than DU 145 (prostate cancer), but they had no toxicity toward normal cells.
Identification of Novel Dual-Target Estrogen Receptor α Degraders with Tubulin Inhibitory Activity for the Treatment of Endocrine-Resistant Breast Cancer
Endocrine resistance remains a significant problem in the clinical treatment of estrogen receptor α-positive (ERα+) breast cancer (BC). In this study, we developed a series of novel dual-functional ERα degraders based on a bridged bicyclic scaffold with selenocyano (SeCN) side chains. These compounds displayed potent ERα degradation and tubulin depolymerization activity. Among them, compounds 35s and
Distler,H., Angewandte Chemie, 1965, vol. 77, p. 291 - 302
作者:Distler,H.
DOI:——
日期:——
Development of Selective Estrogen Receptor Modulator (SERM)-Like Activity Through an Indirect Mechanism of Estrogen Receptor Antagonism: Defining the Binding Mode of 7-Oxabicyclo[2.2.1]hept-5-ene Scaffold Core Ligands
作者:Yangfan Zheng、Manghong Zhu、Sathish Srinivasan、Jerome C. Nwachukwu、Valerie Cavett、Jian Min、Kathryn E. Carlson、Pengcheng Wang、Chune Dong、John A. Katzenellenbogen、Kendall W. Nettles、Hai-Bing Zhou
DOI:10.1002/cmdc.201200048
日期:2012.6
we discovered estrogenreceptor (ER) ligands with a novel three‐dimensional oxabicyclo[2.2.1]heptene corescaffold and good ER binding affinity act as partial agonists via small alkyl ester substitutions on the bicyclic core that indirectlymodulate the critical switch helix in the ER ligandbinding domain, helix 12, by interactions with helix 11. This contrasts with the mechanism of action of tamoxifen
A strategy to develop chemotherapeutic agents by combining several active groups into a single molecule as a conjugate that can modulate multiple cellular pathways may produce compounds having higher efficacy compared to that of single-target drugs. In this article, we describe the synthesis and evaluation of an array of dual-acting ER and histone deacetylase inhibitors. These novel hybrid compounds combine an indirect antagonism structure motif of ER (OBHS, oxabicycloheptene sulfonate) with the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA). These OBHS-HDACi conjugates exhibited good ER binding affinity and excellent ERa antagonistic activity, and they also exhibited potent inhibitory activities against HDACs. Compared with the approved drug tamoxifen, these conjugates exhibited higher antitumor potency in ER alpha-positive breast cancer cells (MCF-7). Moreover, these conjugates not only showed selective anticancer activity that was more potent against MCF-7 cells than DU 145 (prostate cancer), but they had no toxicity toward normal cells.