中文名称 | 英文名称 | CAS号 | 化学式 | 分子量 |
---|---|---|---|---|
N-叔丁氧羰基-L-天冬氨酸 1-叔丁酯 | N-tert-butoxycarbonyl aspartic acid tert-butyl ester | 34582-32-6 | C13H23NO6 | 289.329 |
—— | 1-tert-butyl 4-methyl N-(tert-butyloxycarbonyl)-L-aspartate | 34582-31-5 | C14H25NO6 | 303.356 |
Boc-L-天冬氨酸 4-甲酯 | (S)-2-t-butoxycarbonylaminosuccinic acid 4-methyl ester | 59768-74-0 | C10H17NO6 | 247.248 |
Glutamine is the most abundant amino acid in human plasma, although it is challenging to determine glutamine’s metabolic fate noninvasively. In this work, we utilize established chemical methods to develop a platform for imaging glutamine metabolism using hyperpolarized magnetic resonance imaging. Using this strategy, we are able to spatially measure glutaminolysis in vivo as well as develop a biomarker for the inhibition of glutaminase. Combining this biomarker with isotope tracing metabolomics connects this inhibition to reduced glutamine contribution to the tricarboxylic acid cycle. This provides an approach for future imaging of glutamine metabolism in humans.
谷氨酰胺是人体血浆中最丰富的氨基酸,但非侵入性地确定谷氨酰胺的代谢命运具有挑战性。在这项工作中,我们利用已建立的化学方法开发了一种使用超极化磁共振成像来成像谷氨酰胺代谢的平台。利用这种策略,我们能够在体内空间地测量谷氨酰胺的溶解以及开发一种抑制谷氨酰胺酶的生物标志物。将这种生物标志物与同位素示踪代谢组学相结合,将这种抑制与谷氨酰胺对三羧酸循环的贡献减少相联系。这为将来在人类中成像谷氨酰胺代谢提供了一种方法。