Discovery of Potent, Selective, and Brain-Penetrant 1H-Pyrazol-5-yl-1H-pyrrolo[2,3-b]pyridines as Anaplastic Lymphoma Kinase (ALK) Inhibitors
摘要:
Anaplastic lymphoma kinase (ALK), a member of the receptor tyrosine kinase family, is predominantly expressed in the brain and implicated in neuronal development and cognition. However, the detailed function of ALK in the central nervous system (CNS) is still unclear. To elucidate the role of ALK in the CNS, it was necessary to discover a potent, selective, and brain-penetrant ALK inhibitor. Scaffold hopping and lead optimization of N-(2,4-difluorobenzyl)-3-(1H-pyrazol-5yl)imidazo[1,2-b]pyridazin-6-amine 1 guided by a cocrystal structure of compound 1 bound to ALK resulted in the identification of (6-(1-(5-fluoropyridin-2-yl)ethoxy)-1-(5-methyl-1H-pyrazol-3-yl)-1H-pyrrolo [2,3-b)]pyridin-3-yl) ( (2S)-2-methylmorpholin-4-yl)methanone 13 as a highly potent, selective, and brain-penetrable compound. Intraperitoneal administration of compound 13 significantly decreased the phosphorylated-ALK (p-ALK) levels in the hippocampus and prefrontal cortex in the mouse brain. These results suggest that compound 13 could serve as a useful chemical probe to elucidate the mechanism of ALK-mediated brain functions and the therapeutic potential of ALK inhibition.
Scalable Synthesis of Trifluoromethylated Imidazo-Fused N-Heterocycles Using TFAA and Trifluoroacetamide as CF<sub>3</sub>-Reagents
作者:Gabriel Schäfer、Muhamed Ahmetovic、Stefan Abele
DOI:10.1021/acs.orglett.7b03291
日期:2017.12.15
A scalable synthesis of trifluoromethylated imidazo-fused N-heterocyles from heterocyclic benzylamines using TFAA as trifluoromethylatingreagent is presented. The reaction proceeds via intermediate benzylic N-trifluoroacetamides followed by dehydrative cyclization to the products. To further broaden the scope and practicality, a new method for the preparation of benzylic N-trifluoroacetamides via