作者:David M. Rowley、Phillip D. Lightfoot、Robert Lesclaux、Timothy J. Wallington
DOI:10.1039/ft9928801369
日期:——
The kinetics and mechanism of the self-reaction of cyclopentylperoxy radicals: 2 c-C5H9O2→ 2 c-C5H9O + O2(1a), → c-C5H9OH + c-C5H8O + O2(1b), have been studied using both time-resolved and end-product-analysis techniques. Determination of the product yields from the photolysis of Cl2–c-C5H10–O2–N2 mixtures using FTIR spectroscopy demonstrates that ring-opening of the cyclopentoxy radical formed in channel (1a): c-C5H9O + M → CH2(CH2)3CHO + M (3) dominates over reaction with oxygen: c-C5H9O + O2→ c-C5H8O + HO2(2), under atmospheric conditions. Flash photolysis-UV absorption experiments were used to obtain the UV spectrum of the cyclopentylperoxy radical and the kinetics of reaction (1). The spectrum of c-C5H9O2 is similar to those of other alkylperoxy radicals, with a maximum cross-section of (5.22 ± 0.20)× 10–18 cm2 molecule–1 at 250 nm, measured relative to a value of 4.55 × 10–18 cm2 molecule–1 for CH3O2 at 240 nm. The observed second-order rate constant, kobs(–d[c-C5H9O2]/dt= 2kobs[c-C5H9O2]2), for removal of cyclopentylperoxy radicals was dependent on the oxygen partial pressure. Experiments as a function of temperature from 243 to 373 K gave limiting minimum and maximum values of kobs at low (<1 Torr) and high (>50 Torr) oxygen partial pressures, respectively: kmin/cm3 molecule–1 s–1=(1.3 ± 0.4)× 10–14 exp[(188 ± 83)K/T] and kmax/cm3 molecule–1 s–1=(2.9 ± 0.8)× 10–13 exp[–(555 ± 77)K/T]. At low oxygen partial pressures, the only effective removal channel for cyclopentylperoxy radicals is the molecular channel (1b) and kmin can be equated to k1b. Simulations suggest that kmax represents an upper limit on k1 and is at most 25% greater. In light of the present results on the cyclopentylperoxy radical, further experiments were performed on the cyclohexylperoxy radical self-reaction: 2 c-C6H11O2→ 2 c-C6H11O + O2(16a), → c-C6H11OH + c-C6H10O + O2(16b) at low oxygen partial pressures, giving k16b/cm3 molecule–1 s–1=(1.3 ± 0.3)× 10–14 exp[(185 ± 15) K/T] and an estimated k16/cm3 molecule–1 s–1= 7.7 × 10–14 exp(–184 K/T). The above errors are 1σ and represent experimental uncertainty only.
使用时间分辨模型研究了环戊基过氧自由基自反应的动力学和机理:2 c-C5H9O2→ 2 c-C5H9O + O2(1a), → c-C5H9OH + c-C5H8O + O2(1b)和最终产品分析技术。使用 FTIR 光谱测定 Cl2–c-C5H10–O2–N2 混合物光解的产物产率表明,通道 (1a) 中形成环戊氧基自由基的开环:c-C5H9O + M → CH2(CH2)3CHO +在大气条件下,M (3) 主导与氧的反应:c-C5H9O + O2→ c-C5H8O + HO2(2)。采用闪光光解-紫外吸收实验获得了环戊基过氧自由基的紫外光谱和反应动力学(1)。 c-C5H9O2 的光谱与其他烷基过氧自由基的光谱相似,在 250 nm 处最大横截面为 (5.22 ± 0.20)× 10–18 cm2 molecular–1,相对于 4.55 × 10–18 的值测量cm2 分子–1(CH3O2),240 nm。观察到的去除环戊基过氧自由基的二阶速率常数 kobs(–d[c-C5H9O2]/dt= 2kobs[c-C5H9O2]2) 取决于氧分压。作为 243 至 373 K 温度函数的实验分别给出了低氧分压 (<1 Torr) 和高氧分压 (>50 Torr) 下 kobs 的限制最小值和最大值:kmin/cm3 分子–1 s–1=( 1.3±0.4)×10–14exp[(188±83)K/T]和kmax/cm3分子–1s–1=(2.9±0.8)×10–13exp[–(555±77)K/T ]。在低氧分压下,环戊基过氧自由基唯一有效的去除通道是分子通道(1b),kmin 可等于 k1b。模拟表明 kmax 代表 k1 的上限,最多大 25%。根据环戊基过氧自由基的现有结果,对环己基过氧自由基自反应进行了进一步的实验: 2 c-C6H11O2→ 2 c-C6H11O + O2(16a), → c-C6H11OH + c-C6H10O + O2(16b) )在低氧分压下,给出 k16b/cm3 分子–1 s–1=(1.3 ± 0.3)× 10–14 exp[(185 ± 15) K/T] 和估计的 k16/cm3 分子–1 s–1 = 7.7 × 10–14 exp(–184 K/T)。上述误差为 1σ,仅代表实验不确定性。