Palladium-catalyzed cross-coupling reaction of aryldioxaborolane with 2-bromo-N,N-dimethylacetamide
摘要:
A Suzuki-type cross-coupling of aryldioxaborolane with 2-bromo-N,N-dimethylacetamide in the presence of a catalytic amount of tricyclohexylphosphine as the ligand and hydroquinone as the free-radical scavenger has been demonstrated as a convenient and simple way for the synthesis of alpha-arylacetamide. (C) 2003 Elsevier Science Ltd. All rights reserved.
A Mn‐catalyzed diastereo‐ and enantioselective hydrogenation of α‐substituted β‐ketoamides has been realized for the first time under dynamic kinetic resolution conditions. anti‐α‐Substituted β‐hydroxy amides, which are useful building blocks for the synthesis of bioactive molecules and chiral drugs, were prepared in high yields with excellent selectivity (up to >99 % dr and >99 % ee) and unprecedentedly
The present invention provides a compound of Formula (I)
as described herein, or a pharmaceutically acceptable salt or a solvate thereof. The present invention also provides pharmaceutical compositions comprising one or more said compounds, and methods for using said compounds for treating or preventing a thromboses, embolisms, hypercoagulability or fibrotic changes.
The present invention relates to novel triazine compounds of formula (1), methods of their preparation, pharmaceutical compositions containing these compounds and the use of these compounds to treat proliferative disorders such as tumors and cancers and also other conditions and disorders related to or associated with dysregulation of PI3 Kinases, PI3 Kinase pathway, mTOR and/or the mTOR pathway.
Primary resource: Hypervalent iodine-based aminating reagents containing a transferable (diarylmethylene)amino group can be used for the α-amination of simple carbonylcompounds such as esters, amides, and ketones in the presence of a lithium base. The (diarylmethylene)amino groups of the products can be readily modified, thus providing access to primary amines and diarylmethylamines.
Insights into Directing Group Ability in Palladium-Catalyzed C−H Bond Functionalization
作者:Lopa V. Desai、Kara J. Stowers、Melanie S. Sanford
DOI:10.1021/ja8045519
日期:2008.10.8
This paper describes a detailed investigation of factors controlling the dominance of a directing group in Pd-catalyzed ligand-directed arene acetoxylation. Mechanistic studies, involving reaction kinetics, Hammett analysis, kinetic isotope effect experiments, and the kinetic order in oxidant, have been conducted for a series of different substrates. Initial rates studies of substrates bearing different directing groups showed that these transformations are accelerated by the use of electron-withdrawing directing groups. However, in contrast, under conditions where two directing groups are in competition with one another in the same reaction flask, substrates with electron-donating directing groups react preferentially. These results are discussed in the context of the proposed mechanism for Pd-catalyzed arene acetoxylation.