合成了空气/水分稳定,晶体和可储存的手性水杨基恶唑啉基氧化(V)配合物,并公开了其在氢化硅烷作为氢化物源的情况下催化不对称还原酮亚胺的催化应用。获得了广泛的底物范围,高收率和出色的对映选择性(最高99%)。此外,对映体纯α-氨基酯,γ-和δ-内酰胺以及异吲哚啉酮的合成也已使用该方法进行。最后,该方法已应用于具有药物相关性的合成靶标,例如R -(+)-沙丁胺碱和R -(+)-crispine A.
The enantioselectiveStreckerreaction of N-diphenylphosphinoyl ketoimines has been achieved by use of in situ prepared chiral N,N‘-dioxide catalyst from l-piperidinamide 3f and m-chloroperoxybenzoic acid (m-CPBA). Excellent yields (up to 99%) and high enantioselectivities (up to 92% ee) were obtained. In particular, in situ prepared catalyst with readily available chiral material made the procedure
Asymmetric catalysis: A facileenantioselective Strecker reaction of ketimines with trimethylsilyl cyanide (TMSCN) was realized by employing chiral (S)‐BNPNa 3 e and PBAP as an additive (see image). A wide substrate scope and good‐to‐excellent enantioselectivities were achieved.
For the enantioselective borohydride reduction of carbonyl compounds catalyzed by the optically active ketoiminatocobalt complexes, chloroform has been employed as a unique solvent for achieving a high enantioselectivity, whereas it was found that a catalytic amount of chloroform effectively activated the present catalytic system to convert various ketones into the corresponding reduced product with a high ee in the THF solvent.
Asymmetric Transfer Hydrogenation of Ketimines Using Well-Defined Iron(II)-Based Precatalysts Containing a PNNP Ligand
作者:Alexandre A. Mikhailine、Mazharul I. Maishan、Robert H. Morris
DOI:10.1021/ol302079q
日期:2012.9.7
complexes containing PNNP ligands catalyze a highly enantioselective reduction of N-(diphenylphosphinoyl)- and N-(p-tolylsulphonyl)-ketimines. Under mild conditions and low catalyst loading, the ketimines are successfully reduced to the corresponding amines in enantiomeric excess ranging from 94 to 99%.
Enantioselective Hydrosilylation of Imines Catalyzed by Chiral Zinc Acetate Complexes
作者:Agata Bezłada、Marcin Szewczyk、Jacek Mlynarski
DOI:10.1021/acs.joc.5b02613
日期:2016.1.4
A series of zinc acetate complexes with optically pure diphenylethanediamine (DPEDA)-derived ligands have been employed as enantioselectivecatalyst for the hydrosilylation of various imines. High control of stereoselectivity (up to 97% ee) and excellent yields (up to 96%) were gained for a broad range of N-phosphinoylimines by using (R,R)-N,N′-dibenzyl-1,2-diphenylethane-1,2-diamine. This is the first