Nano crystalline ZnO catalyzed one pot multicomponent reaction for an easy access of fully decorated 4H-pyran scaffolds and its rearrangement to 2-pyridone nucleus in aqueous media
摘要:
A green and highly efficient protocol has been developed for the synthesis of 4H-pyran scaffolds installing a one-pot three-component coupling reaction of an aldehyde, malononitrile, and a 1,3-diketo compound using nano structured ZnO as the catalyst in aqueous alcoholic medium. A greener method to synthesize 3,4-dihydropyridin-2-one has also been developed by rearranging 4H-pyran derivatives in aqueous medium applying p-TSOH as the right catalyst source. A wide spectrum of functional groups was tolerated in both the developed synthetic protocols with good to excellent yield of the targeted molecules. (c) 2012 Elsevier Ltd. All rights reserved.
Organocatalytic mediated green approach: A versatile new <scp>L</scp>-valine promoted synthesis of diverse and densely functionalized 2-amino-3-cyano-4H-pyrans
new L-valine promoted facile and versatile green synthesis of diversified 2-amino-3-cyano-4H-pyrans using a one pot multicomponent-tandem reaction of aromatic aldehydes, malononitrile, and diverse electron-rich enolizable carbonyl compounds is described. To the best of our knowledge this is the first report on the use of native L-valine as a catalyst in organic synthesis. Environmental friendly, mild
An efficient one-pot synthesis of functionalized 2-amino-4H-pyrans by a meglumine-catalyzed three-component reaction has been developed. A broad range of substrates including aromatic and heteroaromatic aldehydes, isatin derivatives, and acenaphthenequinone are condensed with enolizable C-H activated compounds and alkylmalonates to give the desired products in high to excellent yields. This methodology provides an alternative approach for rapid access to construct a diversity-oriented library of 4H-pyrans.
Preparation of a superior liquid catalyst by hybridization of three solids of nanoZnO, urea, and choline chloride for Knoevenagel-based reactions
作者:Fatemeh Tamaddon、Davood Azadi
DOI:10.1007/s13738-017-1144-7
日期:2017.10
electron-deficient alkenes. Due to the high diffusion of ZnO nanoparticles in DESs, synergy of nanoZnO with DESs, and much contact of this fluid catalyst with starting materials, all Knoevenagel-based reactions occur with higher yields at lower catalyst loading and shorter times than individual ChCl:2urea, nanoZnO, or even previously catalysts used for this purpose. High polarity and reusability are other
Nano crystalline ZnO catalyzed one pot multicomponent reaction for an easy access of fully decorated 4H-pyran scaffolds and its rearrangement to 2-pyridone nucleus in aqueous media
作者:Pranabes Bhattacharyya、Koyel Pradhan、Sanjay Paul、Asish R. Das
DOI:10.1016/j.tetlet.2012.06.086
日期:2012.8
A green and highly efficient protocol has been developed for the synthesis of 4H-pyran scaffolds installing a one-pot three-component coupling reaction of an aldehyde, malononitrile, and a 1,3-diketo compound using nano structured ZnO as the catalyst in aqueous alcoholic medium. A greener method to synthesize 3,4-dihydropyridin-2-one has also been developed by rearranging 4H-pyran derivatives in aqueous medium applying p-TSOH as the right catalyst source. A wide spectrum of functional groups was tolerated in both the developed synthetic protocols with good to excellent yield of the targeted molecules. (c) 2012 Elsevier Ltd. All rights reserved.