摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

Ethyl 3-(1-methyl-4-nitro-1H-pyrrol-2-yl)prop-2-enoate | 339984-93-9

中文名称
——
中文别名
——
英文名称
Ethyl 3-(1-methyl-4-nitro-1H-pyrrol-2-yl)prop-2-enoate
英文别名
ethyl 3-(1-methyl-4-nitropyrrol-2-yl)prop-2-enoate
Ethyl 3-(1-methyl-4-nitro-1H-pyrrol-2-yl)prop-2-enoate化学式
CAS
339984-93-9
化学式
C10H12N2O4
mdl
——
分子量
224.216
InChiKey
QJMZEVRTTTWUPH-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    364.0±32.0 °C(predicted)
  • 密度:
    1.22±0.1 g/cm3(Temp: 20 °C; Press: 760 Torr)(predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    1.2
  • 重原子数:
    16
  • 可旋转键数:
    4
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.3
  • 拓扑面积:
    77
  • 氢给体数:
    0
  • 氢受体数:
    4

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    Ethyl 3-(1-methyl-4-nitro-1H-pyrrol-2-yl)prop-2-enoate 在 sodium tetrahydroborate 、 palladium 10% on activated carbon 、 benzotriazol-1-yloxyl-tris-(pyrrolidino)-phosphonium hexafluorophosphate 、 N,N-二异丙基乙胺 作用下, 以 甲醇乙酸乙酯N,N-二甲基甲酰胺 为溶剂, 反应 1.08h, 生成
    参考文献:
    名称:
    Synthesis of Pyrrole–Imidazole Polyamide seco-1-Chloromethyl-5-hydroxy-1,2-dihydro-3H-benz[e]indole Conjugates with a Vinyl Linker Recognizing a 7 bp DNA Sequence
    摘要:
    Convergent synthetic routes for N-methylpyrrole (P) and N-methylimidazole (I) seco-1-chloromethyl-5-hydroxy-1,2-dihydro-3H-benz[e]indole (CBI) conjugates with a vinyl linker were developed. New hairpin polyamide-seco-CBI conjugates, compounds 16-19, were synthesized, and their DNA sequence-specific alkylating activities were evaluated via high-resolution denaturing gel electrophoresis and high-performance liquid chromatography (HPLC) product analysis. The new synthetic route for PI conjugates with a vinyl linker consisted of the introduction of a vinylpyrrole unit (8-11) into the C terminal of a PI polyamide synthesized by (fluorenylmethoxy)carbonyl solid-phase peptide synthesis (SPPS), followed by liquid-phase coupling with seco-CBI. The yield of the conjugates was significantly improved compared with that of the method reported previously, which allows us to synthesize various substituted conjugates containing a vinyl linker. Conjugates 16-19 were designed to investigate the substituent effect of the vinyl linker, and conjugate 16S was synthesized to evaluate the reactivity between racemic and S enantiomers of the seco-CBI derivative. The results of high-resolution denaturing gel electrophoresis using 208 bp DNA fragments indicated that alkylation by compounds 16 and 17, in which the H of the vinyl linker of compound 16 was replaced with F, occurred predominantly at the A of the 5'-TTTGTCA-3' sequence at nanomolar concentrations. In clear contrast, compounds 18 and 19, which were methyl or Br derivatives of compound 16, did not exhibit any DNA alkylating activity. Moreover, HPLC product analysis using synthetic oligonucleotides demonstrated that alkylation occurred between the N3 of the adenine of the oligomer and the cyclopropane ring of 16S. Density functional calculation of substituted vinylpyrrole seco-CBI units indicated that methyl and Br substituents led to a significantly distorted geometry of the vinyl group with the pyrrole ring compared with H and F derivatives. Molecular modeling studies offered the additional information that steric hindrance reduced the DNA alkylating activity of these derivatives.
    DOI:
    10.1021/ja3044294
  • 作为产物:
    描述:
    1-甲基-4-硝基吡咯-2-甲醛phosphonoacetic acid ethyl ester 在 sodium hydride 作用下, 以 四氢呋喃 为溶剂, 反应 2.08h, 以66%的产率得到Ethyl 3-(1-methyl-4-nitro-1H-pyrrol-2-yl)prop-2-enoate
    参考文献:
    名称:
    Synthesis of Pyrrole–Imidazole Polyamide seco-1-Chloromethyl-5-hydroxy-1,2-dihydro-3H-benz[e]indole Conjugates with a Vinyl Linker Recognizing a 7 bp DNA Sequence
    摘要:
    Convergent synthetic routes for N-methylpyrrole (P) and N-methylimidazole (I) seco-1-chloromethyl-5-hydroxy-1,2-dihydro-3H-benz[e]indole (CBI) conjugates with a vinyl linker were developed. New hairpin polyamide-seco-CBI conjugates, compounds 16-19, were synthesized, and their DNA sequence-specific alkylating activities were evaluated via high-resolution denaturing gel electrophoresis and high-performance liquid chromatography (HPLC) product analysis. The new synthetic route for PI conjugates with a vinyl linker consisted of the introduction of a vinylpyrrole unit (8-11) into the C terminal of a PI polyamide synthesized by (fluorenylmethoxy)carbonyl solid-phase peptide synthesis (SPPS), followed by liquid-phase coupling with seco-CBI. The yield of the conjugates was significantly improved compared with that of the method reported previously, which allows us to synthesize various substituted conjugates containing a vinyl linker. Conjugates 16-19 were designed to investigate the substituent effect of the vinyl linker, and conjugate 16S was synthesized to evaluate the reactivity between racemic and S enantiomers of the seco-CBI derivative. The results of high-resolution denaturing gel electrophoresis using 208 bp DNA fragments indicated that alkylation by compounds 16 and 17, in which the H of the vinyl linker of compound 16 was replaced with F, occurred predominantly at the A of the 5'-TTTGTCA-3' sequence at nanomolar concentrations. In clear contrast, compounds 18 and 19, which were methyl or Br derivatives of compound 16, did not exhibit any DNA alkylating activity. Moreover, HPLC product analysis using synthetic oligonucleotides demonstrated that alkylation occurred between the N3 of the adenine of the oligomer and the cyclopropane ring of 16S. Density functional calculation of substituted vinylpyrrole seco-CBI units indicated that methyl and Br substituents led to a significantly distorted geometry of the vinyl group with the pyrrole ring compared with H and F derivatives. Molecular modeling studies offered the additional information that steric hindrance reduced the DNA alkylating activity of these derivatives.
    DOI:
    10.1021/ja3044294
点击查看最新优质反应信息

文献信息

  • Synthesis of Pyrrole–Imidazole Polyamide <i>seco</i>-1-Chloromethyl-5-hydroxy-1,2-dihydro-3<i>H</i>-benz[<i>e</i>]indole Conjugates with a Vinyl Linker Recognizing a 7 bp DNA Sequence
    作者:Toshiki Takagaki、Toshikazu Bando、Hiroshi Sugiyama
    DOI:10.1021/ja3044294
    日期:2012.8.8
    Convergent synthetic routes for N-methylpyrrole (P) and N-methylimidazole (I) seco-1-chloromethyl-5-hydroxy-1,2-dihydro-3H-benz[e]indole (CBI) conjugates with a vinyl linker were developed. New hairpin polyamide-seco-CBI conjugates, compounds 16-19, were synthesized, and their DNA sequence-specific alkylating activities were evaluated via high-resolution denaturing gel electrophoresis and high-performance liquid chromatography (HPLC) product analysis. The new synthetic route for PI conjugates with a vinyl linker consisted of the introduction of a vinylpyrrole unit (8-11) into the C terminal of a PI polyamide synthesized by (fluorenylmethoxy)carbonyl solid-phase peptide synthesis (SPPS), followed by liquid-phase coupling with seco-CBI. The yield of the conjugates was significantly improved compared with that of the method reported previously, which allows us to synthesize various substituted conjugates containing a vinyl linker. Conjugates 16-19 were designed to investigate the substituent effect of the vinyl linker, and conjugate 16S was synthesized to evaluate the reactivity between racemic and S enantiomers of the seco-CBI derivative. The results of high-resolution denaturing gel electrophoresis using 208 bp DNA fragments indicated that alkylation by compounds 16 and 17, in which the H of the vinyl linker of compound 16 was replaced with F, occurred predominantly at the A of the 5'-TTTGTCA-3' sequence at nanomolar concentrations. In clear contrast, compounds 18 and 19, which were methyl or Br derivatives of compound 16, did not exhibit any DNA alkylating activity. Moreover, HPLC product analysis using synthetic oligonucleotides demonstrated that alkylation occurred between the N3 of the adenine of the oligomer and the cyclopropane ring of 16S. Density functional calculation of substituted vinylpyrrole seco-CBI units indicated that methyl and Br substituents led to a significantly distorted geometry of the vinyl group with the pyrrole ring compared with H and F derivatives. Molecular modeling studies offered the additional information that steric hindrance reduced the DNA alkylating activity of these derivatives.
查看更多