The Mitochondrial Amidoxime Reducing Component (mARC) Is Involved in Detoxification of N-Hydroxylated Base Analogues
摘要:
The "mitochondrial Amidoxime Reducing Component" (mARC) is the newly discovered fourth molybdenum enzyme in mammals. All hitherto analyzed mammals express two mARC proteins, referred to as mARC1 and mARC2. Together with their electron transport proteins cytochrome b(5) and NADH cytochrome b(5) reductase, they form a three-component enzyme system and catalyze the reduction of N-hydroxylated prodrugs. Here, we demonstrate the reductive detoxification of toxic and mutagenic N-hydroxylated nucleobases and their corresponding nucleosides by the mammalian mARC-containing enzyme system. The N-reductive activity was found in all tested tissues with the highest detectable conversion rates in liver, kidney, thyroid, and pancreas. According to the presumed localization, the N-reductive activity is most pronounced in enriched mitochondrial fractions. In vitro assays with the respective recombinant three-component enzyme system show that both mARC isoforms are able to reduce N-hydroxylated base analogues, with mARC1 representing the more efficient isoform. On the basis of the high specific activities with N-hydroxylated base analogues relative to other N-hydroxylated substrates, our data suggest that mARC proteins might be involved in protecting cellular DNA from misincorporation of toxic N-hydroxylated base analogues during replication by converting them to the correct purine or pyrimidine bases, respectively.
The antiproliferativeactivity screening on human tumor cell lines of a series of modified uracil and cytosine bases as well as some corresponding acyclonucleosides, and comparison of structure–activity relationship revealed the importance of chemical reactivity of the substituent attached to the C5-position of uracil for the activity of studied compounds. Namely, the results obtained for the most
The "mitochondrial Amidoxime Reducing Component" (mARC) is the newly discovered fourth molybdenum enzyme in mammals. All hitherto analyzed mammals express two mARC proteins, referred to as mARC1 and mARC2. Together with their electron transport proteins cytochrome b(5) and NADH cytochrome b(5) reductase, they form a three-component enzyme system and catalyze the reduction of N-hydroxylated prodrugs. Here, we demonstrate the reductive detoxification of toxic and mutagenic N-hydroxylated nucleobases and their corresponding nucleosides by the mammalian mARC-containing enzyme system. The N-reductive activity was found in all tested tissues with the highest detectable conversion rates in liver, kidney, thyroid, and pancreas. According to the presumed localization, the N-reductive activity is most pronounced in enriched mitochondrial fractions. In vitro assays with the respective recombinant three-component enzyme system show that both mARC isoforms are able to reduce N-hydroxylated base analogues, with mARC1 representing the more efficient isoform. On the basis of the high specific activities with N-hydroxylated base analogues relative to other N-hydroxylated substrates, our data suggest that mARC proteins might be involved in protecting cellular DNA from misincorporation of toxic N-hydroxylated base analogues during replication by converting them to the correct purine or pyrimidine bases, respectively.