Design, Synthesis, and Biological Evaluation of Novel Transrepression-Selective Liver X Receptor (LXR) Ligands with 5,11-Dihydro-5-methyl-11-methylene-6H-dibenz[b,e]azepin-6-one Skeleton
摘要:
To obtain novel transrepression-selective liver X receptor (LXR) ligands, we adopted a strategy of reducing the transactivational agonistic activity of the 5,11-dihydro-5-methyl-11-methylene-6H-dibenz[b,e]azepin-6-one derivative 10, which exhibits LXR-mediated transrepressional and transactivational activity. Structural modification of 10 based on the reported X-ray crystal structure of the LXR ligand-binding domain led to a series of compounds, of which almost all exhibited transrepressional activity at 1 or 10 mu M but showed no transactivational activity even at 30 mu M. Among the compounds obtained, 18 and 22 were confirmed to have LXR-dependent transrepressional activity by using peritoneal macrophages from wild-type and LXR-null mice. A newly developed fluorescence polarization assay indicated that they bind directly to LXR alpha. Next, further structural modification was performed with the guidance of docking simulations with LXR alpha, focusing on enhancing the binding of the ligands with LXR alpha through the introduction of substituents or heteroatom(s). Among the compounds synthesized, compound 48, bearing a hydroxyl group, showed potent, selective, and dose-dependent transrepressional activity.
作者:Xiao-Shan Ning、Xin Liang、Kang-Fei Hu、Chuan-Zhi Yao、Jian-Ping Qu、Yan-Biao Kang
DOI:10.1002/adsc.201701512
日期:2018.4.17
A Pd‐tBuONO co‐catalyzed scalable and practical synthesis of indoles with molecular oxygen as terminal oxidant is developed. Either terminal or internal 2‐vinylanilines could be smoothly converted to desired indoles under one general condition. This method has been evaluated in the large scale synthesis of indomethacin and a potential anti‐breast cancer drug candidate 1.
Metal-free intramolecular amino-acyloxylation of 2-aminostyrene with carboxylic acid for the synthesis of 3-acyloxyl indolines in water
作者:Liyan Liu、Zhiyong Wang
DOI:10.1039/c7gc00212b
日期:——
A metal-free amino-acyloxylation of 2-aminostyrene was developed for the synthesis of 3-acyloxyl indolines.
一种无金属的氨基酰氧化反应被开发用于合成3-酰氧基吲哚。
Design, Synthesis, and Biological Evaluation of Novel Transrepression-Selective Liver X Receptor (LXR) Ligands with 5,11-Dihydro-5-methyl-11-methylene-6<i>H</i>-dibenz[<i>b</i>,<i>e</i>]azepin-6-one Skeleton
To obtain novel transrepression-selective liver X receptor (LXR) ligands, we adopted a strategy of reducing the transactivational agonistic activity of the 5,11-dihydro-5-methyl-11-methylene-6H-dibenz[b,e]azepin-6-one derivative 10, which exhibits LXR-mediated transrepressional and transactivational activity. Structural modification of 10 based on the reported X-ray crystal structure of the LXR ligand-binding domain led to a series of compounds, of which almost all exhibited transrepressional activity at 1 or 10 mu M but showed no transactivational activity even at 30 mu M. Among the compounds obtained, 18 and 22 were confirmed to have LXR-dependent transrepressional activity by using peritoneal macrophages from wild-type and LXR-null mice. A newly developed fluorescence polarization assay indicated that they bind directly to LXR alpha. Next, further structural modification was performed with the guidance of docking simulations with LXR alpha, focusing on enhancing the binding of the ligands with LXR alpha through the introduction of substituents or heteroatom(s). Among the compounds synthesized, compound 48, bearing a hydroxyl group, showed potent, selective, and dose-dependent transrepressional activity.
Novel Synthesis of 2-Chloroquinolines from 2-Vinylanilines in Nitrile Solvent
作者:Byoung Se Lee、Jae Hak Lee、Dae Yoon Chi
DOI:10.1021/jo016196i
日期:2002.11.1
2-Vinyl- or heteroaryl-substituted anilines were reacted with diphosgene in acetonitrile solution via a reactive imidoyl moiety to afford the corresponding 2-chloroquinolines. Facile syntheses of nine 2-chloroquinoline derivatives from several anilines and their postulate mechanism is described. The postulate mechanism of 2-chloroquinoline formation via imidoyl moiety as a good leaving group shows