摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2-(5-methoxy-1H-indol-3-yl)ethylazanium

中文名称
——
中文别名
——
英文名称
2-(5-methoxy-1H-indol-3-yl)ethylazanium
英文别名
——
2-(5-methoxy-1H-indol-3-yl)ethylazanium化学式
CAS
——
化学式
C11H15N2O+
mdl
——
分子量
191.25
InChiKey
JTEJPPKMYBDEMY-UHFFFAOYSA-O
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    0.5
  • 重原子数:
    14
  • 可旋转键数:
    3
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.27
  • 拓扑面积:
    52.7
  • 氢给体数:
    2
  • 氢受体数:
    1

反应信息

  • 作为反应物:
    参考文献:
    名称:
    Molecular cloning of rice serotoninN-acetyltransferase, the penultimate gene in plant melatonin biosynthesis
    摘要:
    AbstractBecause of the absence of an arylalkylamine N‐acetyltransferase (AANAT) homolog in the plant genome, the proposal was made that a GCN5‐related N‐acetyltransferase superfamily gene (GNAT) could be substituted for AANAT. To clone rice serotonin N‐acetyltransferase (SNAT), we expressed 31 rice GNAT cDNAs in Escherichia coli and screened SNAT activity by measuring N‐acetyltryptamine after application with 1 mm tryptamine. GNAT5 was shown to produce high levels of N‐acetyltryptamine in E. coli, suggesting a possible rice SNAT. To confirm SNAT activity, the GNAT5 protein was purified through affinity purification from E. coli culture. The purified recombinant GNAT5 showed high SNAT enzyme activity catalyzing serotonin into N‐acetylserotonin. The values for Km and Vmax were 385 μm and 282 pmol/min/mg protein, respectively. An in vitro enzyme assay of purified SNAT showed N‐acetylserotonin formation to be proportional to enzyme concentration and time, with peak activity at pH 8.8. High substrate concentrations above 1 mm serotonin inhibited SNAT activity. Finally, the mRNA level of SNAT was higher in shoots than in roots, but it was expressed constitutively, unlike N‐acetylserotonin methyltransferase (ASMT), the terminal enzyme in melatonin synthesis. These results suggest that ASMT rather than SNAT is the rate‐limiting enzyme of melatonin biosynthesis in plants.
    DOI:
    10.1111/jpi.12011
  • 作为产物:
    参考文献:
    名称:
    水稻组蛋白脱乙酰基酶10和拟南芥组蛋白脱乙酰基酶14基因编码N-乙酰5-羟色胺脱乙酰酶,催化N-乙酰5-羟色胺转化为5-羟色胺,这是植物褪黑素生物合成的逆反应。
    摘要:
    在植物中,褪黑激素的产生受到严格的调节,这与其褪色素的前体的产生不同,后者是对衰老和病原体暴露等刺激产生高度诱导作用的。外源性5-羟色胺处理不会在植物中极大地诱导N-乙酰5-羟色胺(NAS)和褪黑激素的产生,这表明从5-羟色胺生物合成褪黑激素的途径中可能存在一个或多个调控基因。在此报告中,我们发现NAS在水稻幼苗中迅速大量转化为5-羟色胺,表明存在N-乙酰5-羟色胺脱乙酰基酶(ASDAC)。为了克隆假定的ASDAC基因,我们筛选了4个被称为组蛋白脱乙酰基酶(HDAC)的基因。)基因,但编码的蛋白质靶向叶绿体或线粒体而不是细胞核。在表达这些基因的4种重组大肠杆菌菌株中,发现一种表达水稻HDAC10基因的大肠杆菌菌株能够响应于NAS处理而产生5-羟色胺。重组纯化的水稻HDAC10(OsHDAC10)蛋白对NAS,N-乙酰酪胺(NAT),N具有ASDAC酶活性-乙酰色胺和褪黑激素,对于NAT具有
    DOI:
    10.1111/jpi.12460
点击查看最新优质反应信息

文献信息

  • Mechanistic and Structural Analysis of <i>Drosophila melanogaster</i> Arylalkylamine <i>N</i>-Acetyltransferases
    作者:Daniel R. Dempsey、Kristen A. Jeffries、Jason D. Bond、Anne-Marie Carpenter、Santiago Rodriguez-Ospina、Leonid Breydo、K. Kenneth Caswell、David J. Merkler
    DOI:10.1021/bi5006078
    日期:2014.12.16
    Arylalkylamine N-acetyltransferase (AANAT) catalyzes the penultimate step in the biosynthesis of melatonin and other N-acetylarylalkylamides from the corresponding arylalkylamine and acetyl-CoA. The N-acetylation of arylalkylamines is a critical step in Drosophila melanogaster for the inactivation of the bioactive amines and the sclerotization of the cuticle. Two AANAT variants (AANATA and AANATB) have been identified in D. melanogaster, in which AANATA differs from AANATB by the truncation of 35 amino acids from the N-terminus. We have expressed and purified both D. melanogaster AANAT variants (AANATA and AANATB) in Escherichia coli and used the purified enzymes to demonstrate that this N-terminal truncation does not affect the activity of the enzyme. Subsequent characterization of the kinetic and chemical mechanism of AANATA identified an ordered sequential mechanism, with acetyl-CoA binding first, followed by tyramine. We used a combination of pH-activity profiling and site-directed mutagenesis to study prospective residues believed to function in AANATA catalysis. These data led to an assignment of Glu-47 as the general base in catalysis with an apparent pKa of 7.0. Using the data generated for the kinetic mechanism, structure-function relationships, pH-rate profiles, and site-directed mutagenesis, we propose a chemical mechanism for AANATA.
  • Cloning and characterization of the serotonin <i>N</i> -acetyltransferase-2 gene (<i>SNAT2</i> ) in rice (<i>Oryza sativa</i> )
    作者:Yeong Byeon、Hyoung Yool Lee、Kyoungwhan Back
    DOI:10.1111/jpi.12339
    日期:2016.9
    AbstractThe penultimate enzyme in melatonin synthesis is serotonin N‐acetyltransferase (SNAT), which exists as a single copy in mammals and plants. Our recent studies of the Arabidopsis snat‐knockout mutant and SNAT RNAi rice (Oryza sativa) plants predicted the presence of at least one other SNAT isogene in plants; that is, the snat‐knockout mutant of Arabidopsis and the SNAT RNAi rice plants still produced melatonin, even in the absence or the suppression of SNAT expression. Here, we report a molecular cloning of an SNAT isogene (OsSNAT2) from rice. The mature amino acid sequences of SNAT proteins indicated that OsSNAT2 and OsSNAT1 proteins had 39% identity values and 60% similarity. The Km and Vmax values of the purified recombinant OsSNAT2 were 371 μm and 4700 pmol/min/mg protein, respectively; the enzyme's optimal activity temperature was 45°C. Confocal microscopy showed that the OsSNAT2 protein was localized to both the cytoplasm and chloroplasts. The in vitro enzyme activity of OsSNAT2 was severely inhibited by melatonin, but the activities of sheep SNAT (OaSNAT) and rice OsSNAT1 proteins were not. The enzyme activity of OsSNAT2 was threefold higher than that of OsSNAT1, but 232‐fold lower than that of OaSNAT. The OsSNAT1 and OsSNAT2 transcripts were similarly suppressed in rice leaves during the melatonin induction after cadmium treatment. Phylogenetic analyses indicated that OsSNAT1 and OsSNAT2 are distantly related, suggesting that they evolved independently from Cyanobacteria prior to the endosymbiosis event.
  • Substrate-specific enhancement of the oxidative half-reaction of monoamine oxidase
    作者:Anthony K. Tan、Rona R. Ramsay
    DOI:10.1021/bi00060a003
    日期:1993.3.9
    Monoamine oxidases A and B have identical flavin sites but different, although overlapping, amine substrate specificity. Reoxidation of ternary complexes containing substrate is much faster than of free enzyme, and the enhancement is greater in the A form than the B form. The oxidative half-reaction was studied with a variety of substrates to elucidate the specificity of the effect and to probe the different influences of substrate on the flavin reoxidation in the two forms of the enzyme. The second-order rate constant for the reoxidation was highest with monoamine oxidase A when kynuramine was the ligand (508 x 10(3) M-1 s-1) compared to 4 x 10(3) M-1 s-1 in its absence. MPTP (166 x 10(3) M-1 s-1) also enhanced reoxidation well, but indole substrates stimulated only poorly (e.g., tryptamine, 29 x 10(3) M-1 s-1; serotonin, 50 x 10(3) M-1 s-1). For the A form, the reduction of the flavin was rate-limiting in all cases. For the B form, reoxidation was rate-limiting for beta-phenylethylamine and contributed to the determination of the overall rate with several substrates. The ratio of the enhanced rate of oxidation to the rate of reduction correlated with the redox state of the enzyme in turnover experiments. All the observations are consistent with alternate paths of reoxidation, via either free enzyme or a reduced enzyme-substrate complex. The flux through each path is determined by the relative dissociation constants and rate constants.
查看更多

同类化合物

(Z)-3-[[[2,4-二甲基-3-(乙氧羰基)吡咯-5-基]亚甲基]吲哚-2--2- (S)-(-)-5'-苄氧基苯基卡维地洛 (R)-(+)-5'-苄氧基卡维地洛 (R)-卡洛芬 (N-(Boc)-2-吲哚基)二甲基硅烷醇钠 (E)-2-氰基-3-(5-(2-辛基-7-(4-(对甲苯基)-1,2,3,3a,4,8b-六氢环戊[b]吲哚-7-基)-2H-苯并[d][1,2,3]三唑-4-基)噻吩-2-基)丙烯酸 (4aS,9bR)-6-溴-2,3,4,4a,5,9b-六氢-1H-吡啶并[4,3-B]吲哚 (3Z)-3-(1H-咪唑-5-基亚甲基)-5-甲氧基-1H-吲哚-2-酮 (3Z)-3-[[[4-(二甲基氨基)苯基]亚甲基]-1H-吲哚-2-酮 (3R)-(-)-3-(1-甲基吲哚-3-基)丁酸甲酯 (3-氯-4,5-二氢-1,2-恶唑-5-基)(1,3-二氧代-1,3-二氢-2H-异吲哚-2-基)乙酸 齐多美辛 鸭脚树叶碱 鸭脚木碱,鸡骨常山碱 鲜麦得新糖 高氯酸1,1’-二(十六烷基)-3,3,3’,3’-四甲基吲哚碳菁 马鲁司特 马鞭草(VERBENAOFFICINALIS)提取物 马来酸阿洛司琼 马来酸替加色罗 顺式-ent-他达拉非 顺式-1,3,4,4a,5,9b-六氢-2H-吡啶并[4,3-b]吲哚-2-甲酸乙酯 顺式-(+-)-3,4-二氢-8-氯-4'-甲基-4-(甲基氨基)-螺(苯并(cd)吲哚-5(1H),2'(5'H)-呋喃)-5'-酮 靛青二磺酸二钾盐 靛藍四磺酸 靛红联二甲酚 靛红磺酸钠 靛红磺酸 靛红乙烯硫代缩酮 靛红-7-甲酸甲酯 靛红-5-磺酸钠 靛红-5-磺酸 靛红-5-硫酸钠盐二水 靛红-5-甲酸甲酯 靛红 靛玉红衍生物E804 靛玉红3'-单肟5-磺酸 靛玉红-3'-单肟 靛玉红 靛噻 青色素3联己酸染料,钾盐 雷马曲班 雷莫司琼杂质13 雷莫司琼杂质12 雷莫司琼杂质 雷替尼卜定 雄甾-1,4-二烯-3,17-二酮 阿霉素的代谢产物盐酸盐 阿贝卡尔 阿西美辛杂质3