摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2-(3-phenylpropyl)-2-propargylmalonic acid diethyl ester | 716316-46-0

中文名称
——
中文别名
——
英文名称
2-(3-phenylpropyl)-2-propargylmalonic acid diethyl ester
英文别名
Diethyl 2-(3-phenylpropyl)-2-prop-2-ynylpropanedioate
2-(3-phenylpropyl)-2-propargylmalonic acid diethyl ester化学式
CAS
716316-46-0
化学式
C19H24O4
mdl
——
分子量
316.397
InChiKey
WXRIHSONISJBQK-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    4.2
  • 重原子数:
    23
  • 可旋转键数:
    11
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.47
  • 拓扑面积:
    52.6
  • 氢给体数:
    0
  • 氢受体数:
    4

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    2-(3-phenylpropyl)-2-propargylmalonic acid diethyl estersodium hydroxide 作用下, 以 乙醇 为溶剂, 反应 3.0h, 以97%的产率得到2-(3-phenylpropyl)-2-propargylmalonic acid
    参考文献:
    名称:
    Design, Synthesis, and Structure−Activity Relationships of Haloenol Lactones:  Site-Directed and Isozyme-Selective Glutathione S-Transferase Inhibitors
    摘要:
    Overexpression of glutathione S-transferase (GST), particularly the GST-pi isozyme, has been proposed to be one of the biochemical mechanisms responsible for drug resistance in cancer chemotherapy, and inhibition of overexpressed GST has been suggested as an approach to combat GST-induced drug resistance. 3-Cinnamyl-5(E)-bromomethylidenetetrahydro-2-furanone (1a), a lead compound of site-directed GST-pi inactivator, has been shown to potentiate the cytotoxic effect of cisplatin on tumor cells. As an initial step to develop more potent and more selective haloenol lactone inactivators of GST-pi, we examined the relationship between the chemical structures of haloenol lactone derivatives and their GST inhibitory activity. A total of 16 haloenol lactone derivatives were synthesized to probe the effects of (1) halogen electronegativity, (2) electron density of aromatic rings, (3) molecular size and rigidity, (4) lipophilicity, and (5) aromaticity on the potency of GST-pi inactivation. The inhibitory potency of each compound was determined by time-dependent inhibition tests, and recombinant human GST-pi was used to determine their inhibitory activity. Our structure-activity relationship studies demonstrated that (1) reactivity of the halide leaving group plays a weak role in GST inactivation by the haloenol lactones, (2) aromatic electron density may have some influence on the potency of GST inactivation, (3) high rigidity likely disfavors enzyme inhibition, (4) lipophilicity is inversely proportional to enzyme inactivation, and (5) an unsaturated system may be important for enzyme inhibition. This work facilitated understanding of the interaction of GST-pi with haloenol lactone derivatives as site-directed and isozyme-selective inactivators, possibly potentiating cancer chemotherapy.
    DOI:
    10.1021/jm0499615
  • 作为产物:
    描述:
    1-溴-3-苯基丙烷sodium ethanolate 、 sodium hydride 作用下, 以 四氢呋喃乙醇 为溶剂, 反应 18.0h, 生成 2-(3-phenylpropyl)-2-propargylmalonic acid diethyl ester
    参考文献:
    名称:
    Design, Synthesis, and Structure−Activity Relationships of Haloenol Lactones:  Site-Directed and Isozyme-Selective Glutathione S-Transferase Inhibitors
    摘要:
    Overexpression of glutathione S-transferase (GST), particularly the GST-pi isozyme, has been proposed to be one of the biochemical mechanisms responsible for drug resistance in cancer chemotherapy, and inhibition of overexpressed GST has been suggested as an approach to combat GST-induced drug resistance. 3-Cinnamyl-5(E)-bromomethylidenetetrahydro-2-furanone (1a), a lead compound of site-directed GST-pi inactivator, has been shown to potentiate the cytotoxic effect of cisplatin on tumor cells. As an initial step to develop more potent and more selective haloenol lactone inactivators of GST-pi, we examined the relationship between the chemical structures of haloenol lactone derivatives and their GST inhibitory activity. A total of 16 haloenol lactone derivatives were synthesized to probe the effects of (1) halogen electronegativity, (2) electron density of aromatic rings, (3) molecular size and rigidity, (4) lipophilicity, and (5) aromaticity on the potency of GST-pi inactivation. The inhibitory potency of each compound was determined by time-dependent inhibition tests, and recombinant human GST-pi was used to determine their inhibitory activity. Our structure-activity relationship studies demonstrated that (1) reactivity of the halide leaving group plays a weak role in GST inactivation by the haloenol lactones, (2) aromatic electron density may have some influence on the potency of GST inactivation, (3) high rigidity likely disfavors enzyme inhibition, (4) lipophilicity is inversely proportional to enzyme inactivation, and (5) an unsaturated system may be important for enzyme inhibition. This work facilitated understanding of the interaction of GST-pi with haloenol lactone derivatives as site-directed and isozyme-selective inactivators, possibly potentiating cancer chemotherapy.
    DOI:
    10.1021/jm0499615
点击查看最新优质反应信息

文献信息

  • 10.1002/anie.202405678
    作者:Zhou, Yulu、Wu, Zhenzhen、Xu, Jinming、Zhang, Zuxiao、Zheng, Hanliang、Zhu, Gangguo
    DOI:10.1002/anie.202405678
    日期:——
    diastereoselective synthesis of quaternary-carbon-containing fluoroalkylcyclobutanes is realized by photocatalytic 4-exo-trig cyclization cascade of thioalkynes or trifluoromethylalkenes. DFT calculations suggest that a fluorine effect, resulting from hyperconjugative π→σ*C-F interactions, accounts for the α-selective radical addition at the sterically hindered alkene carbon, which facilitates the uncommon
    通过硫代炔或三氟甲基烯烃的光催化4-外三环化级联,实现了含季碳的氟烷基环丁烷的区域选择性和非对映选择性合成。 DFT 计算表明,由超共轭 π→σ* CF相互作用产生的氟效应,解释了空间位阻烯烃碳上的 α-选择性自由基加成,这促进了罕见的 4-exo-trig 环闭合。
  • Design, Synthesis, and Structure−Activity Relationships of Haloenol Lactones:  Site-Directed and Isozyme-Selective Glutathione <i>S</i>-Transferase Inhibitors
    作者:Zhixing Wu、Gurpreet Singh Minhas、Dingyi Wen、Hualiang Jiang、Kaixian Chen、Piotr Zimniak、Jiang Zheng
    DOI:10.1021/jm0499615
    日期:2004.6.1
    Overexpression of glutathione S-transferase (GST), particularly the GST-pi isozyme, has been proposed to be one of the biochemical mechanisms responsible for drug resistance in cancer chemotherapy, and inhibition of overexpressed GST has been suggested as an approach to combat GST-induced drug resistance. 3-Cinnamyl-5(E)-bromomethylidenetetrahydro-2-furanone (1a), a lead compound of site-directed GST-pi inactivator, has been shown to potentiate the cytotoxic effect of cisplatin on tumor cells. As an initial step to develop more potent and more selective haloenol lactone inactivators of GST-pi, we examined the relationship between the chemical structures of haloenol lactone derivatives and their GST inhibitory activity. A total of 16 haloenol lactone derivatives were synthesized to probe the effects of (1) halogen electronegativity, (2) electron density of aromatic rings, (3) molecular size and rigidity, (4) lipophilicity, and (5) aromaticity on the potency of GST-pi inactivation. The inhibitory potency of each compound was determined by time-dependent inhibition tests, and recombinant human GST-pi was used to determine their inhibitory activity. Our structure-activity relationship studies demonstrated that (1) reactivity of the halide leaving group plays a weak role in GST inactivation by the haloenol lactones, (2) aromatic electron density may have some influence on the potency of GST inactivation, (3) high rigidity likely disfavors enzyme inhibition, (4) lipophilicity is inversely proportional to enzyme inactivation, and (5) an unsaturated system may be important for enzyme inhibition. This work facilitated understanding of the interaction of GST-pi with haloenol lactone derivatives as site-directed and isozyme-selective inactivators, possibly potentiating cancer chemotherapy.
查看更多