ANTI-VIRAL TREATMENT AND ASSAY TO SCREENFOR ANTI-VIRAL AGENT
申请人:Severson Bill
公开号:US20130085133A1
公开(公告)日:2013-04-04
The present disclosure relates to novel compounds of formulas (1) through (19) and to a method for treating humans infected with a virus including various respiratory viruses such as members of the Paramyxoviridae family (respiratory syncytial virus (RSV), human metapneumovirus (HMPV), human parainfluenza virus (HPIV), measles virus, and mumps virus) with a compound of formulas (1) through (19). The present disclosure also relates to a cytopathic effect (CPE)-based assay that will assess virus-induced CPE for screening of compounds for treating viral diseases or inhibiting a virus.
Effect of halogen bonding interaction on supramolecular assembly of halogen-substituted phenylpyrazinamides
作者:Hamid Reza Khavasi、Alireza Azhdari Tehrani
DOI:10.1039/c3ce40093j
日期:——
A series of halogen-substituted phenylpyrazinamides have been synthesized and crystallographically characterized in order to investigate the effect of halogen bonding interaction on supramolecular assembly of N-phenylpyrazine-2-carboxamide derivatives. The notable feature in crystal structures of meta- and para-iodinated, brominated and chlorinated compounds is that there is a tendency to form a halogen bonding synthon between adjacent halophenyl and prazine/halophenyl rings. Influence of these halogen bonding interactions on supramolecular assemblies have been discussed with the help of geometrical analysis and theoretical calculations. The X⋯N halogen bonding distances are 2.2–7.7% shorter than the sum of the van der Waals radii of the nitrogen and halogen atoms. Also, theoretical methods show the N⋯X halogen bonding energies within a range of −9.43 to −23.67 kJ mol−1. Our studies show that the selection of halogen atom as well as the position of substitution on phenylpyrazinamide compound may be important for crystal design based on halogen bonding.