Alkynyl Ruthenium Colorimetric Sensors: Optimizing the Selectivity toward Fluoride Anion
摘要:
We report on the synthesis of alkynyl ruthenium colorimetric sensors whose receptors are constituted by thiazolidinedione, rhodanine, or barbituric heads as recognition centers for anions. As modifications in the charge density at these recognition centers affect the whole molecule, through the alkynyl ligand acting as a communicating wire, the effects of hydrogen-bonding interactions with the anions were observed with the naked eye and monitored by UV-vis absorption spectrometry. The selectivity of the sensors was improved through electronic modifications of the alkynyl ruthenium subunit: the higher the electron density at the receptor head, the higher the selectivity is. TD-DFT calculations rationalize the long-range electronic communication as a main characteristic of the alkynyl ruthenium species and as a key to improve the selectivity of alkynyl ruthenium-based sensors toward anions.
We report on the synthesis of alkynyl ruthenium colorimetric sensors whose receptors are constituted by thiazolidinedione, rhodanine, or barbituric heads as recognition centers for anions. As modifications in the charge density at these recognition centers affect the whole molecule, through the alkynyl ligand acting as a communicating wire, the effects of hydrogen-bonding interactions with the anions were observed with the naked eye and monitored by UV-vis absorption spectrometry. The selectivity of the sensors was improved through electronic modifications of the alkynyl ruthenium subunit: the higher the electron density at the receptor head, the higher the selectivity is. TD-DFT calculations rationalize the long-range electronic communication as a main characteristic of the alkynyl ruthenium species and as a key to improve the selectivity of alkynyl ruthenium-based sensors toward anions.
Naked eye detection of anions by alkynyl-ruthenium exo-receptors: selective recognition of fluoride anion
Alkynyl-ruthenium complexes bearing terminal hydrogen-bonding receptors act as efficient anion sensors exhibiting large guest-induced colour changes and show unexpectedly high selectivity to fluoride ions.