Design and synthesis of pyrazole derivatives as potent and selective inhibitors of tissue-nonspecific alkaline phosphatase (TNAP)
摘要:
Tissue-nonspecific alkaline phosphatase (TNAP) plays a central role in regulating extracellular matrix calcification during bone formation and growth. High-throughput screening (HTS) for small molecule TNAP inhibitors led to the identification of hits in the sub-micromolar potency range. We report the design, synthesis and in vitro evaluation of a series of pyrazole derivatives of a screening hit which are potent TNAP inhibitors exhibiting IC50 values as low as 5 nM. A representative of the series was characterized in kinetic studies and determined to have a mode of inhibition not previously observed for TNAP inhibitors. Published by Elsevier Ltd.
HETEROCYCLIC COMPOUND AND p27Kip1 DEGRADATION INHIBITOR
申请人:Uchida Hiroshi
公开号:US20130079306A1
公开(公告)日:2013-03-28
A novel heterocyclic compound or a salt thereof useful for selectively inhibiting the degradation of p27
Kip1
is provided. The compound or the salt thereof is represented by the following formula (1):
wherein A represents an alkyl group, a cycloalkyl group, an aryl group or a heterocyclic group, the group A may have a substituent; the ring B represents a 5- to 8-membered monocyclic heterocyclic ring or a condensed ring containing the monocyclic heterocyclic ring, the ring B may have a substituent; the ring C represents an aromatic ring, the ring C may have a substituent; L represents a linker comprising a main chain having 3 to 5 atoms selected from the group consisting of a carbon atom, a nitrogen atom, an oxygen atom and a sulfur atom, wherein at least one atom in the main chain is a hetero atom selected from the group consisting of a nitrogen atom, an oxygen atom and a sulfur atom, the linker L may have a substituent; and n is 0 or 1.
Tissue-nonspecific alkaline phosphatase (TNAP) plays a central role in regulating extracellular matrix calcification during bone formation and growth. High-throughput screening (HTS) for small molecule TNAP inhibitors led to the identification of hits in the sub-micromolar potency range. We report the design, synthesis and in vitro evaluation of a series of pyrazole derivatives of a screening hit which are potent TNAP inhibitors exhibiting IC50 values as low as 5 nM. A representative of the series was characterized in kinetic studies and determined to have a mode of inhibition not previously observed for TNAP inhibitors. Published by Elsevier Ltd.