摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

1-(2-azidoethyl)-5-aminotetrazole | 1174887-55-8

中文名称
——
中文别名
——
英文名称
1-(2-azidoethyl)-5-aminotetrazole
英文别名
1-(2-Azidoethyl)tetrazol-5-amine;1-(2-azidoethyl)tetrazol-5-amine
1-(2-azidoethyl)-5-aminotetrazole化学式
CAS
1174887-55-8
化学式
C3H6N8
mdl
——
分子量
154.134
InChiKey
KNNLIXJVVBKIOW-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    0.1
  • 重原子数:
    11
  • 可旋转键数:
    3
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.67
  • 拓扑面积:
    84
  • 氢给体数:
    1
  • 氢受体数:
    6

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    1-(2-azidoethyl)-5-aminotetrazoletert-butyl hypochloride 作用下, 以 乙腈 为溶剂, 反应 0.5h, 以86%的产率得到bis(1,1’-(2,2’-azidoethyl))azotetrazole
    参考文献:
    名称:
    发展 5,5'-偶氮双四唑的范围以寻找高性能绿色高能材料
    摘要:
    偶氮四唑部分代表了高能材料的一个很好的平台,它提供了一个平面和富含氮的骨架,结合了高形成热,很容易被功能化和调整。在此,我们从5-氨基四唑钠开始,通过与2-氯乙醇的取代反应得到两种异构体。叠氮乙基和硝基乙基取代的偶氮四唑最终通过各自的 N-乙基官能化 5-氨基四唑前体的氧化偶氮偶联合成,使用次氯酸叔丁酯作为试剂。通过多核核磁共振和红外光谱以及质谱分析所有化合物。使用低温 X 射线晶体学进一步研究了所有固体化合物。通过 CHNO 元素分析验证纯度,并确定分解温度 (DTA) 和对冲击、摩擦和静电放电的敏感性。基于CBS-4M计算结果,使用EXPLO5代码计算能量特性。
    DOI:
    10.1002/ejoc.202100747
  • 作为产物:
    描述:
    1-(2-氯乙基)四唑-5-胺 在 sodium azide 作用下, 以 N,N-二甲基甲酰胺 为溶剂, 反应 4.0h, 以76%的产率得到1-(2-azidoethyl)-5-aminotetrazole
    参考文献:
    名称:
    New Energetic Materials: Functionalized 1-Ethyl-5-aminotetrazoles and 1-Ethyl-5-nitriminotetrazoles
    摘要:
    AbstractA new way to make a bang: Several functionalized 1‐ethyl‐5‐aminotetrazoles, 1‐ethyl‐5‐nitrimino‐tetrazoles, and copper complexes have been synthesized and their chemical and energetic properties have been comprehensively characterized. The compounds belong to all classes of “energetic materials”: explosives, propellants, and pyrotechnics.magnified imageAlkylation of 5‐aminotetrazole (1) with 2‐chloroethanol leads to a mixture of the N‐1 and N‐2 isomers of (2‐hydroxyethyl)‐5‐aminotetrazole. Treatment of 1‐(2‐hydroxyethyl)‐5‐aminotetrazole (2) with SOCl2 yielded 1‐(2‐chlorethyl)‐5‐aminotetrazole (3). 1‐(2‐Azidoethyl)‐5‐aminotetrazole (4) was generated by the reaction of 3 with sodium azide. Nitration of 2, 3, and 4 with HNO3 (100 %) yielded in the case of 2 and 3 1‐(2‐hydroxyethyl)‐5‐nitriminotetrazole (5) and 1‐(2‐chloroethyl)‐5‐nitriminotetrazole (6). In the case of 4, 1‐(2‐nitratoethyl)‐5‐nitriminotetrazole monohydrate (7) was obtained. 1‐(2‐Azidoethyl)‐5‐nitriminotetrazole (8) could be obtained by nitration of 4 with NO2BF4 via the formation of potassium 1‐(2‐azidoethyl)‐5‐nitriminotetrazolate (9). The reaction of 6 with NaN3 resulted in the formation of the salt sodium 1‐(2‐chloroethyl)‐5‐nitriminotetrazolate (10 a). The deprotonation reaction of 6 was further investigated by the formation of the ammonium salt (10 b). The protonation of 2 and 4 with dilute nitric acid led to 1‐(2‐hydroxyethyl)‐5‐aminotetrazolium nitrate (11) and 1‐(2‐azidoethyl)‐5‐aminotetrazolium nitrate (12), respectively. Similarly, protonation of 4 with perchloric acid led to 1‐(2‐azidoethyl)‐5‐aminotetrazolium perchlorate monohydrate (13). Since 5‐nitrimino‐tetrazoles can be used as bidentate ligands, the coordination abilities of 5, 6, and 8 were tested by the reaction with copper nitrate trihydrate, yielding the copper complexes trans‐[diaquabis{1‐(2‐hydroxyethyl)‐5‐nitriminotetrazolato‐κ2N4,O5}copper(II)] (14), trans‐[diaquabis{1‐(2‐chloroethyl)‐5‐nitriminotetrazolato‐κ2N4,O5}copper(II)] dihydrate (15), and [diaquabis{1‐(2‐azidoethyl)‐5‐nitriminotetrazolato‐κ2N4,O5}copper(II)] (16). All compounds were characterized by low‐temperature single‐crystal X‐ray diffraction. In addition, comprehensive characterization (IR, Raman, and multinuclear NMR spectroscopy (1H, 13C), elemental analysis, mass spectrometry, DSC) was performed. The heats of formation of selected compounds were computed by using heats of combustion obtained by bomb calorimetry or calculated by the atomization method. With these values and the densities determined from X‐ray crystallography, several detonation parameter were calculated by the EXPLO5 program. Finally, the sensitivities towards impact and friction were determined using a BAM drop hammer and friction tester.
    DOI:
    10.1002/chem.200802203
点击查看最新优质反应信息

文献信息

  • New Energetic Materials: Functionalized 1-Ethyl-5-aminotetrazoles and 1-Ethyl-5-nitriminotetrazoles
    作者:Jörg Stierstorfer、Karina R. Tarantik、Thomas M. Klapötke
    DOI:10.1002/chem.200802203
    日期:2009.6.2
    AbstractA new way to make a bang: Several functionalized 1‐ethyl‐5‐aminotetrazoles, 1‐ethyl‐5‐nitrimino‐tetrazoles, and copper complexes have been synthesized and their chemical and energetic properties have been comprehensively characterized. The compounds belong to all classes of “energetic materials”: explosives, propellants, and pyrotechnics.magnified imageAlkylation of 5‐aminotetrazole (1) with 2‐chloroethanol leads to a mixture of the N‐1 and N‐2 isomers of (2‐hydroxyethyl)‐5‐aminotetrazole. Treatment of 1‐(2‐hydroxyethyl)‐5‐aminotetrazole (2) with SOCl2 yielded 1‐(2‐chlorethyl)‐5‐aminotetrazole (3). 1‐(2‐Azidoethyl)‐5‐aminotetrazole (4) was generated by the reaction of 3 with sodium azide. Nitration of 2, 3, and 4 with HNO3 (100 %) yielded in the case of 2 and 3 1‐(2‐hydroxyethyl)‐5‐nitriminotetrazole (5) and 1‐(2‐chloroethyl)‐5‐nitriminotetrazole (6). In the case of 4, 1‐(2‐nitratoethyl)‐5‐nitriminotetrazole monohydrate (7) was obtained. 1‐(2‐Azidoethyl)‐5‐nitriminotetrazole (8) could be obtained by nitration of 4 with NO2BF4 via the formation of potassium 1‐(2‐azidoethyl)‐5‐nitriminotetrazolate (9). The reaction of 6 with NaN3 resulted in the formation of the salt sodium 1‐(2‐chloroethyl)‐5‐nitriminotetrazolate (10 a). The deprotonation reaction of 6 was further investigated by the formation of the ammonium salt (10 b). The protonation of 2 and 4 with dilute nitric acid led to 1‐(2‐hydroxyethyl)‐5‐aminotetrazolium nitrate (11) and 1‐(2‐azidoethyl)‐5‐aminotetrazolium nitrate (12), respectively. Similarly, protonation of 4 with perchloric acid led to 1‐(2‐azidoethyl)‐5‐aminotetrazolium perchlorate monohydrate (13). Since 5‐nitrimino‐tetrazoles can be used as bidentate ligands, the coordination abilities of 5, 6, and 8 were tested by the reaction with copper nitrate trihydrate, yielding the copper complexes trans‐[diaquabis1‐(2‐hydroxyethyl)‐5‐nitriminotetrazolato‐κ2N4,O5}copper(II)] (14), trans‐[diaquabis1‐(2‐chloroethyl)‐5‐nitriminotetrazolato‐κ2N4,O5}copper(II)] dihydrate (15), and [diaquabis1‐(2‐azidoethyl)‐5‐nitriminotetrazolato‐κ2N4,O5}copper(II)] (16). All compounds were characterized by low‐temperature single‐crystal X‐ray diffraction. In addition, comprehensive characterization (IR, Raman, and multinuclear NMR spectroscopy (1H, 13C), elemental analysis, mass spectrometry, DSC) was performed. The heats of formation of selected compounds were computed by using heats of combustion obtained by bomb calorimetry or calculated by the atomization method. With these values and the densities determined from X‐ray crystallography, several detonation parameter were calculated by the EXPLO5 program. Finally, the sensitivities towards impact and friction were determined using a BAM drop hammer and friction tester.
  • Evolving the Scope of 5,5’‐Azobistetrazoles in the Search for High Performing Green Energetic Materials
    作者:Maximilian Benz、Michael S. Gruhne、Thomas M. Klapötke、Nina Krüger、Tobias Lenz、Marcus Lommel、Jörg Stierstorfer
    DOI:10.1002/ejoc.202100747
    日期:2021.8.13
    great platform for energetic materials, it offers a planar and nitrogen-rich backbone, combined with a high heat of formation, which easily can be functionalized and tuned. Herein, we start from sodium 5-aminotetrazolate and obtain two isomers by substitution reaction with 2-chloroethanol. Azidoethyl and nitratoethyl substituted azo- tetrazoles were finally synthesized by oxidative azo coupling of the
    偶氮四唑部分代表了高能材料的一个很好的平台,它提供了一个平面和富含氮的骨架,结合了高形成热,很容易被功能化和调整。在此,我们从5-氨基四唑钠开始,通过与2-氯乙醇的取代反应得到两种异构体。叠氮乙基和硝基乙基取代的偶氮四唑最终通过各自的 N-乙基官能化 5-氨基四唑前体的氧化偶氮偶联合成,使用次氯酸叔丁酯作为试剂。通过多核核磁共振和红外光谱以及质谱分析所有化合物。使用低温 X 射线晶体学进一步研究了所有固体化合物。通过 CHNO 元素分析验证纯度,并确定分解温度 (DTA) 和对冲击、摩擦和静电放电的敏感性。基于CBS-4M计算结果,使用EXPLO5代码计算能量特性。
查看更多

同类化合物

伊莫拉明 (5aS,6R,9S,9aR)-5a,6,7,8,9,9a-六氢-6,11,11-三甲基-2-(2,3,4,5,6-五氟苯基)-6,9-甲基-4H-[1,2,4]三唑[3,4-c][1,4]苯并恶嗪四氟硼酸酯 (5-氨基-1,3,4-噻二唑-2-基)甲醇 齐墩果-2,12-二烯[2,3-d]异恶唑-28-酸 黄曲霉毒素H1 高效液相卡套柱 非昔硝唑 非布索坦杂质Z19 非布索坦杂质T 非布索坦杂质K 非布索坦杂质E 非布索坦杂质67 非布索坦杂质65 非布索坦杂质64 非布索坦杂质61 非布索坦代谢物67M-4 非布索坦代谢物67M-2 非布索坦代谢物 67M-1 非布索坦-D9 非布索坦 非唑拉明 雷西纳德杂质H 雷西纳德 阿西司特 阿莫奈韦 阿米苯唑 阿米特罗13C2,15N2 阿瑞匹坦杂质 阿格列扎 阿扎司特 阿尔吡登 阿塔鲁伦中间体 阿培利司N-1 阿哌沙班杂质26 阿哌沙班杂质15 阿可替尼 阿作莫兰 阿佐塞米 镁(2+)(Z)-4'-羟基-3'-甲氧基肉桂酸酯 锌1,2-二甲基咪唑二氯化物 铵2-(4-氯苯基)苯并恶唑-5-丙酸盐 铬酸钠[-氯-3-[(5-二氢-3-甲基-5-氧代-1-苯基-1H-吡唑-4-基)偶氮]-2-羟基苯磺酸基][4-[(3,5-二氯-2-羟基苯 铁(2+)乙二酸酯-3-甲氧基苯胺(1:1:2) 钠5-苯基-4,5-二氢吡唑-1-羧酸酯 钠3-[2-(2-壬基-4,5-二氢-1H-咪唑-1-基)乙氧基]丙酸酯 钠3-(2H-苯并三唑-2-基)-5-仲-丁基-4-羟基苯磺酸酯 钠(2R,4aR,6R,7R,7aS)-6-(2-溴-9-氧代-6-苯基-4,9-二氢-3H-咪唑并[1,2-a]嘌呤-3-基)-7-羟基四氢-4H-呋喃并[3,2-D][1,3,2]二氧杂环己膦烷e-2-硫醇2-氧化物 野麦枯 野燕枯 醋甲唑胺