Synthesis and Catalytic Application of Chiral 1,1‘-Bi-2-naphthol- and Biphenanthrol-Based Pincer Complexes: Selective Allylation of Sulfonimines with Allyl Stannane and Allyl Trifluoroborate
摘要:
New easily accessible 1,1'-bi-2-naphthol- (BINOL-) and biphenanthrol-based chiral pincer complex catalysts were prepared for selective (up to 85% enantiomeric excess) allylation of sulfonimines. The chiral pincer complexes were prepared by a flexible modular approach allowing an efficient tuning of the selectivity of the catalysts. By employment of the different enantiomeric forms of the catalysts, both enantiomers of the homoallylic amines could be selectively obtained. Both allyl stannanes and allyl trifluoroborates can be employed as allyl sources in the reactions. The biphenanthrol-based complexes gave higher selectivity than the substituted BINOL-based analogues, probably because of the well-shaped chiral pocket generated by employment of the biphenanthrol complexes. The enantioselective allylation of sulfonimines presented in this study has important implications for the mechanism given for the pincer complex-catalyzed allylation reactions, confirming that this process takes place without involvement of palladium(0) species.
Synthesis and Catalytic Application of Chiral 1,1‘-Bi-2-naphthol- and Biphenanthrol-Based Pincer Complexes: Selective Allylation of Sulfonimines with Allyl Stannane and Allyl Trifluoroborate
摘要:
New easily accessible 1,1'-bi-2-naphthol- (BINOL-) and biphenanthrol-based chiral pincer complex catalysts were prepared for selective (up to 85% enantiomeric excess) allylation of sulfonimines. The chiral pincer complexes were prepared by a flexible modular approach allowing an efficient tuning of the selectivity of the catalysts. By employment of the different enantiomeric forms of the catalysts, both enantiomers of the homoallylic amines could be selectively obtained. Both allyl stannanes and allyl trifluoroborates can be employed as allyl sources in the reactions. The biphenanthrol-based complexes gave higher selectivity than the substituted BINOL-based analogues, probably because of the well-shaped chiral pocket generated by employment of the biphenanthrol complexes. The enantioselective allylation of sulfonimines presented in this study has important implications for the mechanism given for the pincer complex-catalyzed allylation reactions, confirming that this process takes place without involvement of palladium(0) species.
A palladium-catalyzedasymmetric umpolung allylation reaction of imines with allylicalcohols has been developed. In the presence of chiral spiro phosphoramidite ligand 4, the allylation was accomplished with high yields and good enantioselectivities. The use of highly stable and easily available allylicalcohols instead of allylic metal reagents facilitated the preparation of chiral homoallylic amines
Synthesis and Catalytic Application of Chiral 1,1‘-Bi-2-naphthol- and Biphenanthrol-Based Pincer Complexes: Selective Allylation of Sulfonimines with Allyl Stannane and Allyl Trifluoroborate
作者:Juhanes Aydin、K. Senthil Kumar、Mahmoud J. Sayah、Olov A. Wallner、Kálmán J. Szabó
DOI:10.1021/jo070288b
日期:2007.6.1
New easily accessible 1,1'-bi-2-naphthol- (BINOL-) and biphenanthrol-based chiral pincer complex catalysts were prepared for selective (up to 85% enantiomeric excess) allylation of sulfonimines. The chiral pincer complexes were prepared by a flexible modular approach allowing an efficient tuning of the selectivity of the catalysts. By employment of the different enantiomeric forms of the catalysts, both enantiomers of the homoallylic amines could be selectively obtained. Both allyl stannanes and allyl trifluoroborates can be employed as allyl sources in the reactions. The biphenanthrol-based complexes gave higher selectivity than the substituted BINOL-based analogues, probably because of the well-shaped chiral pocket generated by employment of the biphenanthrol complexes. The enantioselective allylation of sulfonimines presented in this study has important implications for the mechanism given for the pincer complex-catalyzed allylation reactions, confirming that this process takes place without involvement of palladium(0) species.