Identification of Novel Adenosine A2A Receptor Antagonists by Virtual Screening
摘要:
Virtual screening was performed against experimentally enabled homology models of the adenosine A(2A) receptor, identifying a diverse range of ligand efficient antagonists (hit rate 9%). By use of ligand docking and Biophysical Mapping (BPM), hits and 5 were optimized to potent and selective lead molecules (11-13 from 5, pK(I) = 7.5-8.5, 13- to >100-fold selective versus adenosine A(1); 14-16 from 1, pK(I) = 7.9-9.0, 19- to 59-fold selective).
[EN] PHOSPHAMIDE DERIVATIVE, METHOD FOR MANUFACTURING THE SAME, AND USES THEREOF<br/>[FR] DÉRIVÉ DE PHOSPHAMIDE, SON PROCÉDÉ DE FABRICATION ET SES UTILISATIONS<br/>[ZH] 一种磷酰胺衍生物及制备方法和用途
Biophysical Mapping of the Adenosine A<sub>2A</sub> Receptor
作者:Andrei Zhukov、Stephen P. Andrews、James C. Errey、Nathan Robertson、Benjamin Tehan、Jonathan S. Mason、Fiona H. Marshall、Malcolm Weir、Miles Congreve
DOI:10.1021/jm2003798
日期:2011.7.14
A new approach to generating information on ligand receptor interactions within the binding pocket of G protein-coupled receptors has been developed, called Biophysical Mapping (BPM). Starting from a stabilized receptor (StaR), minimally engineered for thermostability, additional single mutations are then added at positions that could be involved in small molecule interactions. The StaR and a panel of binding site mutants are captured onto Biacore chips to enable characterization of the binding of small molecule ligands using surface plasmon resonance (SPR) measurement. A matrix of binding data for a set of ligands versus each active site mutation is then generated, providing specific affinity and kinetic information (K-D, k(on), and k(off)) of receptor-ligand interactions. This data set, in combination with molecular modeling and docking, is used to map the small molecule binding site for each class of compounds. Taken together, the many constraints provided by these data identify key protein-ligand interactions and allow the shape of the site to be refined to produce a high quality three-dimensional picture of ligand binding, thereby facilitating structure based drug design. Results of biophysical mapping of the adenosine A(2A) receptor are presented.