Brain Penetrable Histone Deacetylase 6 Inhibitor SW-100 Ameliorates Memory and Learning Impairments in a Mouse Model of Fragile X Syndrome
摘要:
Disease-modifying therapies are needed for Fragile X Syndrome (FXS), as at present there are no effective treatments or cures. Herein, we report on a tetrahydroquinoline-based selective histone deacetylase 6 (HDAC6) inhibitor SW-100, its pharmacological and ADMET properties, and its ability to improve upon memory performance in a mouse model of FXS, Fmr1-1- mice. This small molecule demonstrates good brain penetrance, low-nanomolar potency for the inhibition of HDAC6 (IC50 = 2.3 nM), with at least a thousand-fold selectivity over all other class I, II, and IV HDAC isoforms. Moreover, through its inhibition of the alpha-tubulin deacetylase domain of HDAC6 (CD2), in cells SW-100 upregulates alpha-tubulin acetylation with no effect on histone acetylation and selectively restores the impaired acetylated alpha-tubulin levels in the hippocampus of Fmr1(-/-) mice. Lastly, SW-100 ameliorates several memory and learning impairments in Fmr1(-/-) mice, thus modeling the intellectual deficiencies associated with FXS, and hence providing a strong rationale for pursuing HDAC6-based therapies for the treatment of this rare disease.
Iridium-Catalyzed Highly Efficient and Site-Selective Deoxygenation of Alcohols
作者:Shiyi Yang、Weiping Tang、Zhanhui Yang、Jiaxi Xu
DOI:10.1021/acscatal.8b02495
日期:2018.10.5
An iridium-catalyzed, highly efficient, and site-selective deoxygenation of primary, secondary, and tertiary alcohols has been realized, under the assistance of a 4-(N-substituted amino)aryl directing group. Only the hydroxyl adjacent to the directing group can be deoxygenated. The deoxygenation is performed in water, with formic acid as both the promoter and hydride donor. Excellent yields and functionality
HDAC INHIBITORS AND THERAPEUTIC METHODS USING THE SAME
申请人:Kozikowski Alan
公开号:US20140128408A1
公开(公告)日:2014-05-08
Histone deacetylases inhibitors (HDACIs) and compositions containing the same are disclosed. Methods of treating diseases and conditions wherein inhibition of HDAC provides a benefit, like a cancer, a neurodegenerative disorder, a peripheral neuropathy, a neurological disease, traumatic brain injury, stroke, hypertension, malaria, an autoimmune disease, autism, autism spectrum disorders, and inflammation, also are disclosed.