摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

Dibromoacetic acid-1-13C | 138333-54-7

中文名称
——
中文别名
——
英文名称
Dibromoacetic acid-1-13C
英文别名
2,2-dibromoacetic acid
Dibromoacetic acid-1-13C化学式
CAS
138333-54-7
化学式
C2H2Br2O2
mdl
——
分子量
218.834
InChiKey
SIEILFNCEFEENQ-VQEHIDDOSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    1.5
  • 重原子数:
    6
  • 可旋转键数:
    1
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.5
  • 拓扑面积:
    37.3
  • 氢给体数:
    1
  • 氢受体数:
    2

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    Dibromoacetic acid-1-13C 在 lithium aluminium tetrahydride 作用下, 以 乙醚 为溶剂, 生成 Bromo[1-13C]ethanol 、 2-dibromo<1-(13)C>-ethanol
    参考文献:
    名称:
    Formation of etheno adducts of adenosine and cytidine from 1-halooxiranes. Evidence for a mechanism involving initial reaction with the endocyclic nitrogen atoms
    摘要:
    The etheno derivatives of nucleic acid bases contain an additional ring and are of interest because of their useful fluorescence properties and their potential as mutagenic lesions in DNA. The mechanism of formation from 2-haloacetaldehydes is known to involve initial Schiff base formation at an exocyclic nitrogen; however, mechanisms of formation from the more relevant 1-substituted oxiranes have not been established. The reaction of N6-methyladenosine (5) with 1-chlorooxirane yielded the stable carbinolamine 7,8-dihydro-8-hydroxy-9-methyl-3-beta-D-ribofuranosylimidazo[2,1-i]purinium species (10), consistent with initial attack of the N1 atom of adenine at the methylene of 1-chlorooxirane. No products indicative of initial reaction at the N6 atom of adenine were found. Reaction of 2,2-dibromoethanol with adenosine or cytidine at pH 9.2 yielded 1,N6-ethenoadenosine (1) or 3,N4-ethenocytidine (2), respectively, presumably via the base-catalyzed formation of 1-bromooxirane from the bromohydrin. When reactions were done with 2,2-dibromo[1-C-13]ethanol, 1 contained label only at C-7 and 2 contained label only at C-3. A role for 2-bromoacetaldehyde in these reactions was ruled out by the lack of incorporation of deuterium from (H2O)-H-2 into 1 under conditions where the exchange of the methylene protons of 2-bromoacetaldehyde with the solvent was relatively rapid. The collective results are most consistent with a mechanism in which the basic endocyclic nitrogen (N1 of adenine or N3 of cytosine) reacts with the methylene carbon of the 1-halooxirane, and, after ring opening and loss of the leaving group, the resulting aldehyde reacts with the exocyclic nitrogen to form the additional ring.
    DOI:
    10.1021/ja00029a041
  • 作为产物:
    描述:
    溴乙酸-1-13C三溴化磷 作用下, 反应 72.0h, 以59%的产率得到Dibromoacetic acid-1-13C
    参考文献:
    名称:
    Formation of etheno adducts of adenosine and cytidine from 1-halooxiranes. Evidence for a mechanism involving initial reaction with the endocyclic nitrogen atoms
    摘要:
    The etheno derivatives of nucleic acid bases contain an additional ring and are of interest because of their useful fluorescence properties and their potential as mutagenic lesions in DNA. The mechanism of formation from 2-haloacetaldehydes is known to involve initial Schiff base formation at an exocyclic nitrogen; however, mechanisms of formation from the more relevant 1-substituted oxiranes have not been established. The reaction of N6-methyladenosine (5) with 1-chlorooxirane yielded the stable carbinolamine 7,8-dihydro-8-hydroxy-9-methyl-3-beta-D-ribofuranosylimidazo[2,1-i]purinium species (10), consistent with initial attack of the N1 atom of adenine at the methylene of 1-chlorooxirane. No products indicative of initial reaction at the N6 atom of adenine were found. Reaction of 2,2-dibromoethanol with adenosine or cytidine at pH 9.2 yielded 1,N6-ethenoadenosine (1) or 3,N4-ethenocytidine (2), respectively, presumably via the base-catalyzed formation of 1-bromooxirane from the bromohydrin. When reactions were done with 2,2-dibromo[1-C-13]ethanol, 1 contained label only at C-7 and 2 contained label only at C-3. A role for 2-bromoacetaldehyde in these reactions was ruled out by the lack of incorporation of deuterium from (H2O)-H-2 into 1 under conditions where the exchange of the methylene protons of 2-bromoacetaldehyde with the solvent was relatively rapid. The collective results are most consistent with a mechanism in which the basic endocyclic nitrogen (N1 of adenine or N3 of cytosine) reacts with the methylene carbon of the 1-halooxirane, and, after ring opening and loss of the leaving group, the resulting aldehyde reacts with the exocyclic nitrogen to form the additional ring.
    DOI:
    10.1021/ja00029a041
点击查看最新优质反应信息

文献信息

  • Formation of etheno adducts of adenosine and cytidine from 1-halooxiranes. Evidence for a mechanism involving initial reaction with the endocyclic nitrogen atoms
    作者:F. Peter Guengerich、Veronica D. Raney
    DOI:10.1021/ja00029a041
    日期:1992.1
    The etheno derivatives of nucleic acid bases contain an additional ring and are of interest because of their useful fluorescence properties and their potential as mutagenic lesions in DNA. The mechanism of formation from 2-haloacetaldehydes is known to involve initial Schiff base formation at an exocyclic nitrogen; however, mechanisms of formation from the more relevant 1-substituted oxiranes have not been established. The reaction of N6-methyladenosine (5) with 1-chlorooxirane yielded the stable carbinolamine 7,8-dihydro-8-hydroxy-9-methyl-3-beta-D-ribofuranosylimidazo[2,1-i]purinium species (10), consistent with initial attack of the N1 atom of adenine at the methylene of 1-chlorooxirane. No products indicative of initial reaction at the N6 atom of adenine were found. Reaction of 2,2-dibromoethanol with adenosine or cytidine at pH 9.2 yielded 1,N6-ethenoadenosine (1) or 3,N4-ethenocytidine (2), respectively, presumably via the base-catalyzed formation of 1-bromooxirane from the bromohydrin. When reactions were done with 2,2-dibromo[1-C-13]ethanol, 1 contained label only at C-7 and 2 contained label only at C-3. A role for 2-bromoacetaldehyde in these reactions was ruled out by the lack of incorporation of deuterium from (H2O)-H-2 into 1 under conditions where the exchange of the methylene protons of 2-bromoacetaldehyde with the solvent was relatively rapid. The collective results are most consistent with a mechanism in which the basic endocyclic nitrogen (N1 of adenine or N3 of cytosine) reacts with the methylene carbon of the 1-halooxirane, and, after ring opening and loss of the leaving group, the resulting aldehyde reacts with the exocyclic nitrogen to form the additional ring.
查看更多

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸 麦撒奎 鹅膏氨酸 鹅膏氨酸 鸦胆子酸A甲酯 鸦胆子酸A 鸟氨酸缩合物