Stereospecific Synthesis of Oligonucleotides Containing Crotonaldehyde Adducts of Deoxyguanosine
摘要:
Crotonaldehyde reacts with DNA to form two diastereomeric 1,N-2 cyclic adducts of deoxyguanosine. A synthesis of the two diastereomeric deoxynucleosides has been achieved by reaction of mixed diastereomers of 4-amino-1,2-pentanediol with 2-fluoro-O-6-(trimethylsilylethyl)-deoxyinosine. The resulting N-2-(1-methyl-3,4-dihydroxybutyl)-deoxyguanosine was treated with NaIO4, cleaving the vicinal diol to the aldehyde. Spontaneous cyclization gave the two diastereomers of the crotonaldehyde-adducted nucleoside that were readily separated by HPLC. The absolute configurations were assigned by an enantiospecific synthesis of one diastereomer from (S)-3-aminobutanoic acid. The synthetic strategy has been extended to preparation of a site-specifically adducted oligonucleotide by reaction of the mixed diastereomers of 4-amino-1,2-pentanediol with an 8-mer oligonucleotide containing 2-fluoro-O-6-(trimethylsilylethyl)-deoxyinosine. The diastereomeric oligonucleotides were separated by HPLC and absolute configurations of the adducts were established by enzymatic digestion to the adducted nucleosides.
Stereospecific Synthesis of Oligonucleotides Containing Crotonaldehyde Adducts of Deoxyguanosine
摘要:
Crotonaldehyde reacts with DNA to form two diastereomeric 1,N-2 cyclic adducts of deoxyguanosine. A synthesis of the two diastereomeric deoxynucleosides has been achieved by reaction of mixed diastereomers of 4-amino-1,2-pentanediol with 2-fluoro-O-6-(trimethylsilylethyl)-deoxyinosine. The resulting N-2-(1-methyl-3,4-dihydroxybutyl)-deoxyguanosine was treated with NaIO4, cleaving the vicinal diol to the aldehyde. Spontaneous cyclization gave the two diastereomers of the crotonaldehyde-adducted nucleoside that were readily separated by HPLC. The absolute configurations were assigned by an enantiospecific synthesis of one diastereomer from (S)-3-aminobutanoic acid. The synthetic strategy has been extended to preparation of a site-specifically adducted oligonucleotide by reaction of the mixed diastereomers of 4-amino-1,2-pentanediol with an 8-mer oligonucleotide containing 2-fluoro-O-6-(trimethylsilylethyl)-deoxyinosine. The diastereomeric oligonucleotides were separated by HPLC and absolute configurations of the adducts were established by enzymatic digestion to the adducted nucleosides.
作者:David S. Laitar、John W. Kramer、Bryan T. Whiting、Emil B. Lobkovsky、Geoffrey W. Coates
DOI:10.1039/b913698c
日期:——
4-Substituted oxazolines, which are readily synthesized from naturally occurring α-amino acids, are converted efficiently and stereospecifically to β-amidoaldehydes in the presence of synthesis gas and catalytic dicobalt octacarbonyl.
Stereospecific Synthesis of Oligonucleotides Containing Crotonaldehyde Adducts of Deoxyguanosine
作者:Lubomir V. Nechev、Ivan Kozekov、Constance M. Harris、Thomas M. Harris
DOI:10.1021/tx0100690
日期:2001.11.1
Crotonaldehyde reacts with DNA to form two diastereomeric 1,N-2 cyclic adducts of deoxyguanosine. A synthesis of the two diastereomeric deoxynucleosides has been achieved by reaction of mixed diastereomers of 4-amino-1,2-pentanediol with 2-fluoro-O-6-(trimethylsilylethyl)-deoxyinosine. The resulting N-2-(1-methyl-3,4-dihydroxybutyl)-deoxyguanosine was treated with NaIO4, cleaving the vicinal diol to the aldehyde. Spontaneous cyclization gave the two diastereomers of the crotonaldehyde-adducted nucleoside that were readily separated by HPLC. The absolute configurations were assigned by an enantiospecific synthesis of one diastereomer from (S)-3-aminobutanoic acid. The synthetic strategy has been extended to preparation of a site-specifically adducted oligonucleotide by reaction of the mixed diastereomers of 4-amino-1,2-pentanediol with an 8-mer oligonucleotide containing 2-fluoro-O-6-(trimethylsilylethyl)-deoxyinosine. The diastereomeric oligonucleotides were separated by HPLC and absolute configurations of the adducts were established by enzymatic digestion to the adducted nucleosides.