Complexes of cyclic polyaza chelators with cations of alkaline earth metals for enhanced biological activity
申请人:Winchell S. Harry
公开号:US20050112066A1
公开(公告)日:2005-05-26
Cyclic polyaza chelators that possess high affinity and specificity for first transition series metal cations exhibit an unanticipated improvement in biological activity when administered as complexes with cations of the alkaline earth metals, Ca(II) and Mg(II), most notably Ca(II). By virtue of this improvement, these complexes are particularly effective in the treatment of pathological conditions, including ischemia and ischemia-reperfusion injury.
Compounds with chelation affinity and selectivity for first transition
申请人:Concat, Inc.
公开号:US05874573A1
公开(公告)日:1999-02-23
This invention involves synthesis and use of a class of compounds with chelation affinity and selectivity for first transition series elements. Administration of the free or conjugated compound, or physiological salts of the free or conjugated compound, results in decrease in the in vivo bioavailability of first transition series elements and/or removal from the body of first transition series elements and elements with similar chemical properties. These characteristics make such compounds useful in the management of diseases associated with a bodily excess of first transition series elements and elements with similar chemical properties. This invention demonstrates that such compounds inhibit mammalian, bacterial, and fungal cell replication and are therefore useful in the treatment of neoplasia, infection, inflammation, immune response, and in termination of pregnancy. Since these compounds are capable of descreasing the in vivo availability of tissue iron they are useful in management of free radical mediated tissue damage, and oxidation mediated tissue damage. When combined with radioisotopic or paramagnetic cations of first transition series elements, or elements with chemical properties similar to those of first transition series elements, prior to their administration, the resulting complexes are useful as diagnostic agents in nuclear medicine and magnetic resonance imaging (MRI).