Optimization of Antitumor Modulators of Pre-mRNA Splicing
摘要:
The spliceosome regulates pre-mRNA splicing, which is a critical process in normal mammalian cells. Recently, recurrent mutations in numerous spliceosomal proteins have been associated with a number of cancers. Previously, natural product antitumor agents have been shown to interact with one of the proteins that is subject to recurrent mutations (SF3B1). We report the optimization of a class of tumor-selective spliceosome modulators that demonstrate significant in vivo antitumor activity. This optimization culminated in the discovery of sudemycin D6, which shows potent cytotoxic activity in the melanoma line SK-MEL-2 (IC50 = 39 nM) and other tumor cell lines, including JeKo-1 (IC50 = 22 nM), He La (IC50 = SO nM), and SK-N-AS (IC50 = 81 nM). We also report improved processes for the synthesis of these compounds. Our work supports the idea that sudemycin D6 is worthy of further investigation as a novel preclinical anticancer agent with application in the treatment of numerous human cancers.
Optimization of Antitumor Modulators of Pre-mRNA Splicing
摘要:
The spliceosome regulates pre-mRNA splicing, which is a critical process in normal mammalian cells. Recently, recurrent mutations in numerous spliceosomal proteins have been associated with a number of cancers. Previously, natural product antitumor agents have been shown to interact with one of the proteins that is subject to recurrent mutations (SF3B1). We report the optimization of a class of tumor-selective spliceosome modulators that demonstrate significant in vivo antitumor activity. This optimization culminated in the discovery of sudemycin D6, which shows potent cytotoxic activity in the melanoma line SK-MEL-2 (IC50 = 39 nM) and other tumor cell lines, including JeKo-1 (IC50 = 22 nM), He La (IC50 = SO nM), and SK-N-AS (IC50 = 81 nM). We also report improved processes for the synthesis of these compounds. Our work supports the idea that sudemycin D6 is worthy of further investigation as a novel preclinical anticancer agent with application in the treatment of numerous human cancers.
In one aspect, the invention relates to compounds having anticancer activity; synthetic methods for making the compounds; pharmaceutical compositions comprising the compounds; and methods of treating disorders associated with uncontrolled cellular proliferation using the compounds and compositions. This abstract is intended to be used as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.
In one aspect, the invention relates to compounds having anticancer activity; synthetic methods for making the compounds; pharmaceutical compositions comprising the compounds; and methods of treating disorders associated with uncontrolled cellular proliferation using the compounds and compositions. This abstract is intended to be used as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.
Optimization of Antitumor Modulators of Pre-mRNA Splicing
作者:Chandraiah Lagisetti、Gustavo Palacios、Tinopiwa Goronga、Burgess Freeman、William Caufield、Thomas R. Webb
DOI:10.1021/jm401370h
日期:2013.12.27
The spliceosome regulates pre-mRNA splicing, which is a critical process in normal mammalian cells. Recently, recurrent mutations in numerous spliceosomal proteins have been associated with a number of cancers. Previously, natural product antitumor agents have been shown to interact with one of the proteins that is subject to recurrent mutations (SF3B1). We report the optimization of a class of tumor-selective spliceosome modulators that demonstrate significant in vivo antitumor activity. This optimization culminated in the discovery of sudemycin D6, which shows potent cytotoxic activity in the melanoma line SK-MEL-2 (IC50 = 39 nM) and other tumor cell lines, including JeKo-1 (IC50 = 22 nM), He La (IC50 = SO nM), and SK-N-AS (IC50 = 81 nM). We also report improved processes for the synthesis of these compounds. Our work supports the idea that sudemycin D6 is worthy of further investigation as a novel preclinical anticancer agent with application in the treatment of numerous human cancers.