Synthesis of dipicolylamino substituted quinazoline as chemosensor for cobalt(II) recognition based on excited-state intramolecular proton transfer
摘要:
A new fluorescent chemosensor for sensing Co(II) using di(2-picolyl)amino (DPA) as a recognition group and quinazoline as a reporting group has been synthesized and characterized. The quinazoline derivative contains an intramolecular hydrogen bond, which would undergo excited-state intramolecular proton transfer (ESIPT) at illumination. The fluorescence quenching is attributed to cation-induced inhibition of ESIPT, which constitutes the basis for the determination of Co(II) with the prepared chemosensor. The fluorophore forms 1:1 cobalt(II) complex with the logarithm of apparent dissociation constant log K-a = 6.8. The analytical performance characteristics of the proposed Co(II)-sensitive sensor were investigated. The chemosensor exhibits a linear response toward Co(II) in the concentration range 3.2 x 10(-8) to 1.4 x 10(-6) M, with a working pH range from 7.0 to 9.5 and high selectivity. (C) 2007 Elsevier B.V. All rights reserved.
A new fluorescent chemosensor for sensing Co(II) using di(2-picolyl)amino (DPA) as a recognition group and quinazoline as a reporting group has been synthesized and characterized. The quinazoline derivative contains an intramolecular hydrogen bond, which would undergo excited-state intramolecular proton transfer (ESIPT) at illumination. The fluorescence quenching is attributed to cation-induced inhibition of ESIPT, which constitutes the basis for the determination of Co(II) with the prepared chemosensor. The fluorophore forms 1:1 cobalt(II) complex with the logarithm of apparent dissociation constant log K-a = 6.8. The analytical performance characteristics of the proposed Co(II)-sensitive sensor were investigated. The chemosensor exhibits a linear response toward Co(II) in the concentration range 3.2 x 10(-8) to 1.4 x 10(-6) M, with a working pH range from 7.0 to 9.5 and high selectivity. (C) 2007 Elsevier B.V. All rights reserved.