[EN] PGD2 RECEPTOR ANTAGONISTS FOR THE TREATMENT OF INFLAMMATORY DISEASES [FR] ANTAGONISTES DE RECEPTEUR DE LA PROSTAGLANDINE D2 POUR LE TRAITEMENT DE MALADIES INFLAMMATOIRES
Compositions and Methods for Fermentation of Biomass
申请人:Parekh Sarad
公开号:US20100268000A1
公开(公告)日:2010-10-21
In one aspect, this invention relates to production of useful fermentation end-products from biomass through simultaneous hydrolysis and fermentation by a microorganism, such as
Clostridium phytofermentans
. The invention also relates to the development of a process for efficient pretreatment and conversion of lignocellulosic biomass to end-products with high conversion efficiency (yield). In another aspect, methods for producing a fermentation end-product by fermenting hexose (C6) and pentose (C5) sugars with a microorganism, such as
Clostridium phytofermentans
are disclosed herein.
Methods, enzymes, recombinant microorganism, and microbial systems are provided for converting polysaccharides, such as those derived from biomass, into suitable monosaccharides or oligosaccharides, as well as for converting suitable monosaccharides or oligosaccharides into commodity chemicals, such as biofuels. Commodity chemicals produced by the methods described herein are also provided. Commodity chemical enriched, refinery-produced petroleum products are also provided, as well as methods for producing the same.
Method for the enzymatic production of 3-hydroxy-3-methylbutyric acid from acetone and acetyl-CoA
申请人:Scientist of Fortune S.A.
公开号:EP2940141A1
公开(公告)日:2015-11-04
Described is a method for the production of 3-hydroxy-3-methylbutyric acid (also referred to as beta-hydroxyisovalerate or HIV) from acetone and a compound which provides an activated acetyl group comprising the enzymatic conversion of acetone and a compound which provides an activated acetyl group into 3-hydroxy-3-methylbutyric acid. The conversion makes use of an enzyme which is capable of catalyzing the formation of a covalent bond between the carbon atom of the oxo (i.e. the C=O) group of acetone and the methyl group of the compound which provides an activated acetyl group. Preferably, the enzyme employed in the process is an enzyme with the activity of a HMG CoA synthase (EC 2.3.3.10) and/or a PksG protein and/or an enzyme with the activity of a C-C bond cleavage/condensation lyase, such as a HMG CoA lyase (EC 4.1.3.4). Also described are organisms which are able to produce 3-hydroxy-3-methylbutyric acid from acetone, a compound which provides an activated acetyl group, the use of the above-mentioned enzymes and organisms for the production of 3-hydroxy-3-methylbutyric acid as well as the use of acetone for the production of 3-hydroxy-3-methylbutyric acid.
Hydroxy-oligocarboxylic esters: effects on nerve and use for cutaneous and mucocutaneous organs or sites
申请人:Yu J. Ruey
公开号:US20070093551A1
公开(公告)日:2007-04-26
A composition and method for producing a beneficial effect on a subject's nerve associated with at least one of a cosmetic condition, a dermatological indication and a dental indication and another condition. The composition comprises a hydroxy-oligocarboxylic ester and is formulated for topical administration of the product to a subject to produce the beneficial effect. The method includes topically applying to the subject in a region where the beneficial effect is desired a hydroxy-oligocarboxylic ester in an amount effective to produce the beneficial effect.
[EN] BIOLOGICAL FERMENTATION USING DIHYDROXYACETONE AS A SOURCE OF CARBON<br/>[FR] FERMENTATION BIOLOGIQUE UTILISANT DE LA DIHYDROXYACÉTONE COMME SOURCE DE CARBONE
申请人:KEMBIOTIX LLC
公开号:WO2017139420A1
公开(公告)日:2017-08-17
The present invention relates to the use of hydrocarbons derived from natural gas in the fermentative production of biochemicals including biofuels. More specifically, the present invention provides the method for manufacturing dihydroxyacetone ("DHA") from natural gas, biogas, biomass and CO2 released from industrial plants including electricity-generating plants, steel mills and cement factories and the use of DHA as a source of organic carbon in the fermentative production of biochemicals including biofuels. The present invention comprises three stages. In the first stage of the present invention, syngas and formaldehyde are produced from natural gas, biogas, biomass and CO2 released from industrial plants. In the second stage of the present invention, formaldehyde and syngas are condensed to produce DHA. In the third stage of the present invention, biochemicals including biofuels are produced from DHA using fermentation process involving wild type or genetically modified microbial biocatalysts.